Metallurgical and Materials Transactions B

, Volume 44, Issue 6, pp 1379–1389 | Cite as

Influence of CaO-SiO2-Al2O3 Ternary Oxide System on the Reduction Behavior of Carbon Composite Pellet: Part I. Reaction Kinetics

Article

Abstract

The reduction behavior of composite pellets comprising of hematite, synthetic graphite, and several oxide binder systems was investigated in a laboratory-scale horizontal tube furnace. Three oxide binder systems using silica-rich, alumina-rich, and conventional blast furnace slag compositions were selected to examine the effect of oxide chemistry on the reduction behavior of pellets. Compositional differences in the CaO-SiO2-Al2O3 ternary system were confirmed to influence the reactions occurring in composite pellets during the reduction of iron oxide. An in situ visualization approach was used to observe the oxide/iron/carbon interactions at high temperatures from 1623 K to 1773 K (1350 °C to 1500 °C). The off-gas composition was measured by means of an infrared analyzer to determine the pellet reaction rates. Changes in physical appearance during the in situ reaction experiments demonstrated a strong correlation between the oxide composition and internal reactions. Moreover, the mechanical properties of pellets were investigated by measuring compressive strength to understand the relationship between physical properties of pellets and the associated oxide binder systems selected for this study.

References

  1. 1.
    F. Habashi, Handbook of Extractive Metallurgy, vol. 1, WILEY-VCH, Weinhein, 1997, pp. 104–132.Google Scholar
  2. 2.
    K. Meyer: Pelletizing of Iron Ores, Springer-Verlag, Berlin, 1980, p. 52.Google Scholar
  3. 3.
    A. Kasai, Y. Matsui and Y.Yamagata: CAMP-ISIJ, 2003, vol. 16, No.1, pp. 95.Google Scholar
  4. 4.
    A. Kasai, M. Naito, Y. Matsui and Y. Yamagata: Tetsu-to-Hagané, 2003, vol. 89, pp. 1212.Google Scholar
  5. 5.
    K. Kojima, T. Miwa, M. Gono, A. Yamura, A. Suzuki and J. Haruna: Tetsu-to-Hagané, 1983, vol. 69, pp. 780.Google Scholar
  6. 6.
    S. Takajo, H. Maeda, A. Yumura, T.Osawa and Y. Fujiwara: Tetsu-to-Hagané, 1986, vol.72, p. 886.Google Scholar
  7. 7.
    J. Moon and V. Sahajwalla: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1136-1142.CrossRefGoogle Scholar
  8. 8.
    J. Moon and V. Sahajwalla: Meta//, Mater. Trans. B, 2006, vol. 37, pp. 215-221.CrossRefGoogle Scholar
  9. 9.
    T.W. Kang, S. Gupta, N. Saha and V. Sahajwalla: Iron Steel Inst. Jpn. Int., 2005, vol. 45, pp. 1526-1535.CrossRefGoogle Scholar
  10. 10.
    O. Hideki, K. Tanizawa and T. Usui: Iron Steel Inst. Jpn. Int., 2011, vol. 51, pp. 1274-1278.CrossRefGoogle Scholar
  11. 11.
    T. Matsui, N. Ishiwata, Y. Hara and K. Takeda: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp.2105-2111.CrossRefGoogle Scholar
  12. 12.
    Y.S. Lee, D.J. Min, S.M. Jung and S.H. Lee: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp.1283-1290.CrossRefGoogle Scholar
  13. 13.
    J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung and S.H. Lee: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp.1291-1297.CrossRefGoogle Scholar
  14. 14.
    Y.K. Rao: Metall, Trans. B, 1971, vol. 2B, pp. 1439-1447.Google Scholar
  15. 15.
    R.J. Fruehan: Metall, Trans. B, 1977, vol. 8, pp. 279-286.CrossRefGoogle Scholar
  16. 16.
    A. K. Biswas: Principles of Blast Furnace Ironmaking, Cootha, Brisbane, 1981, pp. 37–185, 349–73.Google Scholar
  17. 17.
    J. Aota, L. Morin, Q. Zhuang and B. Clement: Ironmaking & Steelmaking, 2006, vol. 33, pp. 426-428.CrossRefGoogle Scholar
  18. 18.
    K. Meyer: Pelletizing of Iron Ores, Springer-Verlag, Berlin, 1980, pp. 24–28.Google Scholar
  19. 19.
    A.K. Biswas: Principles of Blast Furnace Ironmaking, Cootha, Brisbane, 1981, pp. 100-104.Google Scholar
  20. 20.
    Verein Deutscher Eisenhüttenleute (VDEh): Slag Atlas, 2nd ed., Verein Deutscher Eisenhüttenleute (VDEh), Düsseldorf, 1995, p. 105.Google Scholar
  21. 21.
    J. S. Machin and T. B. Yee: Journal of the American Ceramic Society, 1948, vol. 31, pp. 200-204.CrossRefGoogle Scholar
  22. 22.
    A. Agarwaland U. Pad: Meta//, Mater. Trans. B, 1999, vol. 30, pp. 295-306.CrossRefGoogle Scholar
  23. 23.
    H.S. Park, S.S. Park, and I. Sohn: Meta//, Mater. Trans. B, 2011, vol. 42, pp. 692-699.CrossRefGoogle Scholar
  24. 24.
    B.D. Roiter: Journal of the American Ceramic Society, 1964, vol. 47, pp. 509-511.CrossRefGoogle Scholar
  25. 25.
    E. T. Turkdogan and J. V. Vinters: Metall, Trans. B, 1972, vol. 3, pp. 1561-1574.Google Scholar
  26. 26.
    O. Kubaschewski: Metallurgical Thermochemistry, 5th ed., Materials Science and Technology, New York, 1979, p. 380.Google Scholar
  27. 27.
    H.S. Park and V. Sahajwalla: Metall. Mater. Trans. B, 2013. DOI:10.1007/s11663-013-9932-7.
  28. 28.
    T. Nagasaka, M. Hino and S. Ban-Ya: Meta//, Mater. Trans. B, 2000, vol. 31, pp. 945-955.CrossRefGoogle Scholar
  29. 29.
    E.T. Turkdogan, V. Koump, J.V. Vinters, and T.F Perzak: Carbon, 1968, vol. 6, pp. 467–484.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Centre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations