Advertisement

Metallurgical and Materials Transactions B

, Volume 45, Issue 1, pp 86–95 | Cite as

Role of B2O3 on the Viscosity and Structure in the CaO-Al2O3-Na2O-Based System

  • Gi Hyun Kim
  • Il Sohn
Article

Abstract

The effect of B2O3 on the viscosity and structure in the calcium-aluminate melt flux system containing Na2O was studied. An increase in the B2O3 content at fixed CaO/Al2O3 ratio lowered the viscosity. Higher CaO/Al2O3 ratio at fixed B2O3 content also decreased the viscosity. The alumino-borate structures were confirmed through Fourier transformed infrared (FTIR) and Raman spectroscopy and consisted of [AlO4]-tetrahedral structural units, [BO3]-triangular structural units, and [BO4]-tetrahedral structural units, which could be correlated to the viscosity. At fixed CaO/Al2O3 ratio, B2O3 additions decreased the [AlO4]-tetrahedral structural units and transformed the 3-D network structures such as pentaborate and tetraborate into 2-D network structures of boroxol and boroxyl rings by breaking the bridged oxygen atoms (O0) to produce non-bridged oxygen atoms (O) leading to a decrease in the molten flux viscosity. At fixed B2O3 contents and higher CaO/Al2O3 ratio, 3-D complex network structures become 3-D simple and 2-D isolated network structures, resulting in lower viscosities. The apparent activation energy for viscous flow varied from 132 to 249 kJ/mol according to the composition of B2O3 and CaO/Al2O3 ratio.

Keywords

B2O3 Mold Flux Slag System B2O3 Content Boroxol Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was partially supported by the Brain Korea 21 (BK21) Project at the Division of the Humantronics Information Materials and by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093823). Partial funding was also provided by the National Science Foundation of Korea Project No. 2012-8-0486.

References

  1. 1.
    H. Kim, H. Matsuura, F. Tsukihashi, W. Wang, D.J. Min, and I. Sohn, Metall. Mater. Trans. B, 2013, 44(1), pp. 5-12.CrossRefGoogle Scholar
  2. 2.
    S. P. He, X. Long, J. F. Xu, T. Wu, and Q. Wang, Ironmaking and Steelmaking, 2012, 39(8), pp. 593-598.CrossRefGoogle Scholar
  3. 3.
    B. Lu, W. Wang, J. Li, H. Zhao, and D. Huang, Metall. Mater. Trans. B, 2013, 44(2), pp. 365-377.CrossRefGoogle Scholar
  4. 4.
    H. Wang, L. Yang, H. Zhu, and Y. Yan: Adv. Mater. Res., 2011, vol. 311-313(Pt.2), pp. 966-69.Google Scholar
  5. 5.
    Q. Xin, W. Guang-hua, and T. Ping, J. Iron and Steel Research, 2010, 17(6), pp. 6-10.CrossRefGoogle Scholar
  6. 6.
    K. Lu and M.K. Hahapatra: J. Appl. Phys., 2008, vol. 104(7), pp. 0749101–0749109.Google Scholar
  7. 7.
    A.C. Wright: Phys. Chem. Glasses, 2010, vol. 51(1), pp. 1–39.Google Scholar
  8. 8.
    V.P. Klyuev and B.Z. Pevzner: Phys. Chem. Glasses, 2000, vol. 41(6), pp. 380–83.Google Scholar
  9. 9.
    V.P. Klyuev and B.Z. Pevzner: Glass Phys. Chem., 2002, vol. 28(4), pp. 207–20.CrossRefGoogle Scholar
  10. 10.
    V.P. Klyuev and B.Z. Pevzner: J. Non-Cryst. Solids, 2007, vol. 353(18-21), pp. 2008–13.CrossRefGoogle Scholar
  11. 11.
    D.L. Griscom: in Borate Glasses: Structure and Applications, L.D. Pye, V.D. Frechette, and N.J. Kreidl, eds., Plenum, New York, 1978, pp. 259–79.Google Scholar
  12. 12.
    G.H. Kim and I. Sohn: ISIJ Int., 2012, vol. 52(1), pp. 68-73.CrossRefGoogle Scholar
  13. 13.
    H. Shao, H. Zhou, and X. Shen, Advanced Mater. Research, 2011, 189-193(Pt. 5), pp. 4466-4471.CrossRefGoogle Scholar
  14. 14.
    I. Ardelean, S. Cora, and V. Ioncu: J. Optoelectron. Adv. Mater., 2006, vol. 8(5), pp. 1843–47.Google Scholar
  15. 15.
    J. Pisarska, Optica Applicata, 2010, 4(2), pp. 367-374.Google Scholar
  16. 16.
    P.F. Wei, H.Q. Zhou, H.K. Zhu, B.Dai, and J. Wang: J. Cent. South Univ. Technol., 2011, vol. 18(5), pp. 1359–64.CrossRefGoogle Scholar
  17. 17.
    I. Ardelean, S. Cora, and D. Rusu, Physica B, 2008, 403(19-20), pp. 3682-3685.CrossRefGoogle Scholar
  18. 18.
    H. Doweidar, G.E. Damrawi, and M. Abdelghany, J. of Mater. Sci., 2012, 47(9), pp. 4028-4035.CrossRefGoogle Scholar
  19. 19.
    H. Fan, G. Gao, G. Wang, and L. Hu, Solid State Sci., 2010, 12(4), pp. 541-545.CrossRefGoogle Scholar
  20. 20.
    H. Li, P, Hrma, J.D. Vienna, M. Qian, Y. Su, and D.E. Smith: J. Non-Cryst. Solids, 2003, vol. 311(1-3), pp. 202–16.CrossRefGoogle Scholar
  21. 21.
    N.O. Dantas, W.E.F. Ayta, A.C.A. Silva, N.F. Cano, S.W. Silva, and P.C. Morais, Sepctrochimica Acta part A : Molecular and Biomolecular Spectroscopy, 2011, 81(1), pp. 140-143.CrossRefGoogle Scholar
  22. 22.
    R. Bruning, J.B. Galbrith, K.E. Braedley, and J. Johnstone: J. Am. Ceram. Soc., 2010, vol. 93(11), pp. 3745–51.CrossRefGoogle Scholar
  23. 23.
    I. Polyakove, V. Klyuev, and B. Pevzner: Phys. Chem. Glasses, 2010, vol. 51(1), pp. 52–58.Google Scholar
  24. 24.
    A.A. Osipov and L.M. Osipova: Glass Phys. Chem., 2009, vol. 35(2), pp. 132–40.CrossRefGoogle Scholar
  25. 25.
    Z. Wang, Q. Shu, and K. Chou, J. Iron Steel Res. Int., 2011, vol. 51(7), pp. 1021–27.Google Scholar
  26. 26.
    B. Cochain, D.R. Neuville, G.S. Henderson, C.A. McCammon, O.Pinet, and P. Richet: J. Am. Ceram. Soc., 2012, vol. 95(3), pp. 962–71.Google Scholar
  27. 27.
    T. Furukawa and W.B. White, J. of Mater. Sci., 1981, 16(10), pp. 2689-2700.CrossRefGoogle Scholar
  28. 28.
    B.O. Mysen, D. Virgo, and C.M. Scarfe, Am. Mineralogist, 1980, 65(7-8), pp. 690-710.Google Scholar
  29. 29.
    J.C. Pandey, M. Raj, S.N. Lenka, P. Suresh, and K. Balasubramaniam, Ironmaking Steelmaking, 2011, 38(1), pp. 74-79.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea

Personalised recommendations