Metallurgical and Materials Transactions B

, Volume 44, Issue 6, pp 1428–1434 | Cite as

A Novel Approach for Direct Synthesis of Nanocrystalline Tungsten Carbide from Milled Scheelite Ore



In recent years, nanostructured tungsten carbide (WC) has been synthesized mainly from precursors like WO3, W, WCl6, and WCl4. These pure precursors are obtained by multistep high temperature treatments from the ore. Single phase nanocrystalline WC has been synthesized for the first time from scheelite ore at significantly lower [923 K (650 °C)] temperature. The activated charcoal and Mg turnings have been used as carbon source and reducing agent, respectively. The effect of time and temperature on the reaction has been investigated. The reaction by-products and impurities were washed firstly with dilute HCl and then with dilute base. The powders were characterized by X-ray diffraction technique and high resolution transmission electron microscope. The XRD patterns were refined by Rietveld method. The WC crystallite size was observed to decrease with lowering of synthesis temperature. The average crystallite size of WC formed was 20 nm. This report presents an exclusive, straight forward, environment friendly, and reproducible method for synthesis of nanocrystalline WC directly from scheelite ore.


High Resolution Transmission Electron Microscope Activate Charcoal Scheelite Reduce Particle Size CaWO4 



The authors are thankful to Dr B.N. Chudasama and Ms Samita for help in Rietveld analysis. The financial assistance provided by Department of Science and Technology, New Delhi, India vide Letter No. SR/S3/ME/0037/2009-SERC dated 15/07/2010 is highly acknowledged.


  1. 1.
    H. Bohm: Nature, 1970, vol. 227, pp. 483-484.CrossRefGoogle Scholar
  2. 2.
    R.B. Levy and M. Boudart: Sci., 1973 vol. 181, pp. 547-549.CrossRefGoogle Scholar
  3. 3.
    J. Lemaitre, B. Vidick, and B. Delmon: J. Catal., 1986 vol. 99, pp. 415-427.CrossRefGoogle Scholar
  4. 4.
    C. Giordano and M. Antonietti: Nano Today., 2011, vol. 6 pp. 366-380.CrossRefGoogle Scholar
  5. 5.
    S.T. Oyama, J.C. Schlatter,J.E. Metcalfe, and J.M. Lambert: Ind. Eng. Chem. Res., 1998 vol. 27, pp. 1639-1648.CrossRefGoogle Scholar
  6. 6.
    P. Heo, K. Ito, A. Tomita, and T. Hibino: Angew. Chem. Int. Ed., 2008 vol. 47 pp. 7841-7844.CrossRefGoogle Scholar
  7. 7.
    J.T. Zhang, H.Y. Ma, D.J. Zhang, P.P. Liu, F. Tian, and Y. Ding: Phys. Chem. Chem. Phys., 2008 vol. 10 pp. 3250-3255.CrossRefGoogle Scholar
  8. 8.
    Z. Wu, Y. Yang, D. Gu, Q. Li, D. Feng, Z. Chen, B. Tu, P.A. Webley, and D. Zhao: Small, 2009 vol. 5(23) pp. 2738- 2749.CrossRefGoogle Scholar
  9. 9.
    Z. Zak Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn: Int. J. Refract. Met. Hard Mater., 2009, vol. 27 pp. 288-299.CrossRefGoogle Scholar
  10. 10.
    L.E. McCandlish, B.H. Kear, and B.K. Kim: Nanostruct. Mater., 1992 vol. 1(2) pp. 119-124.CrossRefGoogle Scholar
  11. 11.
    Z. Lin, L. Wang, J. Zhang, H.K. Mao, and Y. Zhao: App. Phys. Lett., 2009 vol. 95 pp. 211906.CrossRefGoogle Scholar
  12. 12.
    H.H. Ahmed and S. Seetharaman: Met. Mat. Transc. B, 2010, vol. 41B, pp. 173-181.CrossRefGoogle Scholar
  13. 13.
    Y. Yan, L. Zhang, X. Qi, H. Song, J.Y. Wang, H Zhang, and X. Wang: Small., 8: 3350–56, 2012, doi: 10.1002/smll.201200877.CrossRefGoogle Scholar
  14. 14.
    Kh.G. Kirakosyan, Kh.G. Manukyan, S.L. Kharatyan, and R.A. Mnatsakanyan: Mat. Chem. Phys., 2008 vol. 110 pp. 454-456.CrossRefGoogle Scholar
  15. 15.
    M. S. El-Eskandrany, M. Omori, M. Ishikuro, T.J. Konno, K. Takada, K. Sumiyama, T. Hirai, and K. Suzuki, Met. Mat. Transc. A, 1996, vol. 27A, pp. 4210-4213.CrossRefGoogle Scholar
  16. 16.
    M. Razavi, R.M. Rahimipour, and R. Yazdani-Rad: J. All. Compds., 2011 vol. 509 pp. 6683-6688.CrossRefGoogle Scholar
  17. 17.
    J. Ma and Y. Du: J. All. Compds., 2008 vol. 448 pp. 215-218.CrossRefGoogle Scholar
  18. 18.
    T. Ryu, H.Y. Sohn, G. Han, Y.U. Kim, K. S. Hwang, M. Mena, and Z.Z. Fang: Met. Mat. Transc. B, 2008, vol. 39B, 1-6.CrossRefGoogle Scholar
  19. 19.
    S.V. Pol, V.G. Pol, and A. Gedanken. : Adv. Mater., 2006, vol. 18, pp. 2023-2027.CrossRefGoogle Scholar
  20. 20.
    G.S. Upadhyaya: Cemented tungsten carbide, Noyes publications, Westwood, New Jersey, USA 1998.Google Scholar
  21. 21.
    E. Lassner, W. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum, New York 1999.Google Scholar
  22. 22.
    J.I. Martins, A. Moreira, and S.C. Costa: Hydrometall., 2003, vol. 70 pp. 131-141.CrossRefGoogle Scholar
  23. 23.
    Z. Zhao, Y. Liang, and H. Li: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 289-292.CrossRefGoogle Scholar
  24. 24.
    Z. Zhao, J. Li, S. Wang, H. Li, M. Liu, and P. Sun, Y. Li: Hydrometall., 2011, vol. 108, pp. 152-156.CrossRefGoogle Scholar
  25. 25.
    N.J. Welham: Mat. Sci. Eng. A, 1998, vol. 248, pp. 230-237.CrossRefGoogle Scholar
  26. 26.
    N.J. Welham: J. Amer. Inst. Chem. Eng., 2000, vol. 46, pp.68-71.CrossRefGoogle Scholar
  27. 27.
    H. Singh and O.P. Pandey: Cera Inter 2013, vol. 39(1), pp. 785-790.CrossRefGoogle Scholar
  28. 28.
    V.G. Pol, S.V. Pol, and A. Gedanken: Adva. Mater., 2011, vol. 23, pp. 1179-1190.CrossRefGoogle Scholar
  29. 29.
    A. Kumar, K. Singh, and O.P. Pandey: Phys. E., 2009, vol. 41, pp. 677-684.CrossRefGoogle Scholar
  30. 30.
    A. Kumar, K. Singh, and O.P. Pandey: Phys. E., 2010, vol. 42, pp. 2477-2483.CrossRefGoogle Scholar
  31. 31.
    A. Kumar, K. Singh, and O.P. Pandey: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 555-558.CrossRefGoogle Scholar
  32. 32.
    V.K. Pecharsky and P.Y. Zavalij: Fundamentals of powder diffraction and structural characterization of materials. Springer, USA, 2005, pp. 342-343.Google Scholar
  33. 33.
    K. Madhav Reddy, T. N. Rao, J. Joardar: Mat. Chem. Phys., 2011 vol. 128 pp. 121-126.CrossRefGoogle Scholar
  34. 34.
    K. Madhav Reddy, T. N. Rao, J. Joardar: J. All. Compds., 2010 vol. 494 pp. 404-409.CrossRefGoogle Scholar
  35. 35.
    S.R. Vallance, S. Kingman, and D.H. Gregory: Adv. Mater., 2007 vol. 19 pp. 138–42.CrossRefGoogle Scholar
  36. 36.
    J. Rodriguez-Carvajal: Program Fullprof.2k Version 5.0, 2011, LLB, CEA-CNRS.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations