Advertisement

Metallurgical and Materials Transactions B

, Volume 45, Issue 2, pp 381–391 | Cite as

Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

  • K. L. Chao
  • H. Y. Liao
  • J. J. Shyue
  • S. S. Lian
Article

Abstract

The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

Keywords

MoO2 Passive Film Manganese Content Inductively Couple Plasma Atomic Emission Spectroscopy MnFe2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Kohyama, D. Kuroda and T. Hanawa: Mater. Sci. Eng. C, 2004, vol. 24, pp. 737-43.CrossRefGoogle Scholar
  2. 2.
    M. Fini, N.N. Aldini, P. Torricelli, G. Giavaresi, V. Borsari, H. Lenger, J. Bernauer, R. Giardino, R. Chiesa, A. Cigada: Biomaterials, 2003, vol.24, 4929-39.CrossRefGoogle Scholar
  3. 3.
    K. Yasuyuki: Proceedings of International Conference on High Nitrogen Steels, 2006, pp. 45–51.Google Scholar
  4. 4.
    J.W. Simmons: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2085-101.CrossRefGoogle Scholar
  5. 5.
    J.W. Simmons: Acta Mater. 1997, vol. 45, pp. 2467-75.CrossRefGoogle Scholar
  6. 6.
    E. Werner: Mater. Sci. Eng. A, 1988, vol. 101, pp. 93-98.Google Scholar
  7. 7.
    A.J. Sedriks: Corrosion, vol. 42 (7), 1986, pp. 376-45.CrossRefGoogle Scholar
  8. 8.
    Y.X. Qiao, and Y.G. Zheng: Corros. Sci. 2009, vol. 51 (9), pp.979-86.CrossRefGoogle Scholar
  9. 9.
    S.D. Chyou and H.C. Shih: Mater. Sci. Eng. A, 1991, vol.148 (2), pp.241-51.CrossRefGoogle Scholar
  10. 10.
    I. Olefjord and L. Wegrelius: Corros. Sci., 1996, vol. 38 (7), pp.1203-20.CrossRefGoogle Scholar
  11. 11.
    R. Bandy and D.V. Rooyen: Corrosion 1985, 41(4), pp. 228–33.Google Scholar
  12. 12.
    Y.C. Lu, R. Bandy, C.R. Clayton, and R.C. Newman: J. Electrochem. Soc., 1983, vol. 130 (8), pp.1774-76.CrossRefGoogle Scholar
  13. 13.
    C.R. Clayton, G.P. Halada, and J.R. Kearns: Mater. Sci. Eng. A, 1995, vol. 198, pp.135-37.CrossRefGoogle Scholar
  14. 14.
    X. Wu, Y. Fu, J. Huang, E. Han, W. Ke, K. Yang and Z. Jiang: J. Mater. Eng. Perform. 2009, vol. 18 (3), pp.287-98.CrossRefGoogle Scholar
  15. 15.
    I. Olefjord and C.R. Clayton: ISIJ Int. 1991, vol. 31 (2), pp.134-41.CrossRefGoogle Scholar
  16. 16.
    G.C. Palit, V. Kain, and H.S. Gadiyar: Corrosion, 1993, vol. 49 (12), pp.977-91.CrossRefGoogle Scholar
  17. 17.
    R.C. Newman and M.A.A. Ajjawi: Corros. Sci. 1986, vol. 26 (12), pp.1057-63.CrossRefGoogle Scholar
  18. 18.
    Y.C. Lu and M.B. Ives: Corros. Sci. 1992, vol. 33 (2), pp.317-20.CrossRefGoogle Scholar
  19. 19.
    Y.C. Lu, M.B. Ives, and C.R. Clayton: Corros. Sci., 1993, vol. 35(1-4), pp. 89-96.CrossRefGoogle Scholar
  20. 20.
    C.O.A. Olsson: Corros. Sci., 1995, vol. 37 (3), pp. 467-79.CrossRefGoogle Scholar
  21. 21.
    J. Stewart, D.E. Williams: Corros. Sci., 1992, vol. 33 (3), pp.457-74.CrossRefGoogle Scholar
  22. 22.
    R. Bandy, D. Van Rooyen: Corros. Sci., 1983, vol. 39 (6), pp.227-36.CrossRefGoogle Scholar
  23. 23.
    J.H. Shin, J. Lee, D.J. Min and J.H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1081-85.CrossRefGoogle Scholar
  24. 24.
    J. Menzel, W. Kirschner, G. Stein: ISIJ Int., 1996, vol. 36 (7), pp. 893–900.CrossRefGoogle Scholar
  25. 25.
    Y. Murata, K. Koyama, Y. Matsumoto, M. Morinaga, N. Yukawa: ISIJ Int., 1990, vol. 30 (11), pp.927-36.CrossRefGoogle Scholar
  26. 26.
    A. Di Schino, J.M. Kenny: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1969-71.CrossRefGoogle Scholar
  27. 27.
    K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, E. Akiyama: Corros. Sci., 2007, vol. 49 (1), pp.42-52.CrossRefGoogle Scholar
  28. 28.
    S.Y. Kim, H.S. Kwon and H. Kim: Solid State Phenomena, 2007, vol. 124-126, pp. 1533-36.CrossRefGoogle Scholar
  29. 29.
    I.E. Paulauskas, M.P. Brady, H.M. Meyer, R.A. Buchanan, L.R. Walker: Corros. Sci., 2006, vol. 48 (10), pp. 3157–71.CrossRefGoogle Scholar
  30. 30.
    U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, P. Rodriguez: Trans. Indian Inst. Met., 1997, vol. 50 (1), pp. 37–47.Google Scholar
  31. 31.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, MN, 1995, pp. 40–104.Google Scholar
  32. 32.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.St.C. Smart: Appl. Surf. Sci., 2011, vol. 257, pp. 2717-30.CrossRefGoogle Scholar
  33. 33.
    M. Sagara, Y. Katada, T. Kodama, T. Tsuru: J. Jpn. Inst. Met., 2003, vol. 67 (2), pp. 67-73.Google Scholar
  34. 34.
    O. Lavigne, C.A. Dumont, B. Normand, M.H. Berger, C. Duhamel, P. Delichére: Corros. Sci., 2011, vol. 53(6), pp. 2087–96.CrossRefGoogle Scholar
  35. 35.
    L.Y. Zhao, A.C. Siu, L.J. Pariag, Z.H. He, and K.T. Leung: J. Phys. Chem. C, 2007, vol. 111 (40), pp. 14621-64.CrossRefGoogle Scholar
  36. 36.
    T. K. Tseng, L. Wang, H. Chu: Aerosol Air Qual. Res., 2012, vol. 12, pp.961-71.Google Scholar
  37. 37.
    H. Baba, Y. Katada, H. Kimura: J. Jpn. Inst. Met., 2007, vol. 71 (7), pp.570-77.CrossRefGoogle Scholar
  38. 38.
    V.S. Rao, L.K. Singhal: J. Mater. Sci., 2009, vol. 44, pp. 2327–33.CrossRefGoogle Scholar
  39. 39.
    Č. Donik, A. Kocijan, J.T. Grant, M. Jenko, A. Drenik, B. Pihlar: Corros. Sci., 2009, vol. 51 (4), pp. 827-32.CrossRefGoogle Scholar
  40. 40.
    X.Q. Wu, J.B. Huang, E.H. Han, W. Ke, K. Yang, Z.H. Jiang: J. Mater. Eng. Perform., 2008, vol. 18 (3), pp.287-98.CrossRefGoogle Scholar
  41. 41.
    J. Gilewicz-Wolter, Z. Żurek, J. Dudała, J. Lis, M. Homa, M. Wolter: Adv. Sci. Technol., 2006, vol. 46, pp.27-31.CrossRefGoogle Scholar
  42. 42.
    P.J. Uggowitzer, R. Magdowski, M.O. Speidel: ISIJ Int., 1996, vol. 36 (7), pp.901-08.CrossRefGoogle Scholar
  43. 43.
    Y.S. Lim, J.S. Kim, S.J. Ahn, H.S. Kwon, Y. Katada: Corros. Sci., 2001, vol. 43 (1), pp. 53-68.CrossRefGoogle Scholar
  44. 44.
    P.-Y. Park, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto: Corros. Sci, 1996, vol. 38 (3), pp. 397-411.CrossRefGoogle Scholar
  45. 45.
    J.N. Waklyn: Corros. Sci., 1981, vol.21 (3), pp. 211-25.CrossRefGoogle Scholar
  46. 46.
    W. Yang, R.C. Ni, H.Z. Hua: Corros. Sci., 1984, vol.24 (8), pp. 691-707.CrossRefGoogle Scholar
  47. 47.
    Z. Feng, X. Cheng, C. Dong, L. Xu, X. Li: Corros. Sci., 2010, vol.52 (11), pp. 3646-53.CrossRefGoogle Scholar
  48. 48.
    M.K. Lei, X.M. Zhu: J. Electrochem. Soc., 2005, vol. 152 (8), pp.291-95.CrossRefGoogle Scholar
  49. 49.
    H. Ma, Y. Berthier, P. Marcus: Corros. Sci., 2002, vol. 44 (1), pp. 171-78.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • K. L. Chao
    • 1
  • H. Y. Liao
    • 2
  • J. J. Shyue
    • 2
  • S. S. Lian
    • 1
  1. 1.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan R.O.C.
  2. 2.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan R.O.C.

Personalised recommendations