Metallurgical and Materials Transactions B

, Volume 44, Issue 4, pp 984–991 | Cite as

Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams

  • Jaime Lázaro
  • Ester Laguna-Gutiérrez
  • Eusebio Solórzano
  • Miguel Angel Rodríguez-Pérez
Article

Abstract

This work investigates the causes of the anisotropic early expansion (below the melting point) of powder metallurgical (PM) aluminum foam precursors by evaluating the crystallographic anisotropy induced during the production of the precursor materials. A varied group of precursors prepared using different parameters and techniques (direct powder extrusion and hot uniaxial compression) has been investigated. Multidirectional foaming expansion has been registered in situ by means of the optical expandometry technique, while X-ray diffraction has been used to characterize the preferred crystallographic orientation (texture) of the pressed powders. The results point to a clear correlation between the expansion anisotropy and the microstructural crystallographic anisotropy of the precursors. Although this correlation is not a direct cause–effect phenomenon, it is a good indicator of intrinsic precursor characteristics, such as densification and powder interparticle bonding, which govern the expansion behavior during the early stages when the material is still in a solid or semisolid state.

Keywords

Foam Aluminum Foam Compaction Pressure Expansion Behavior Semisolid State 

Notes

Acknowledgments

Financial assistance from the MCINN and Feder Program (MAT2009-14001-C02-01 and MAT 2012-34901), the Junta of Castille and Leon (VA174A12-2) and the European Space Agency (Project MAP AO-99-075) is gratefully acknowledged. In addition, the authors are grateful to the Spanish Ministry of Economy and Competitiveness, which supported this investigation with a FPU-doctoral grant Ref-AP-2007-03318 (J. Lázaro) and a Juan de la Cierva contract of E. Solórzano (JCI-2011-09775). Financial support for PIRTU contract of E. Laguna-Gutierrez by Junta of Castile and Leon (EDU/289/2011) and co-funded by the European Social Fund is also acknowledged. The authors would also like to thank the Alulight Company for providing some of the precursor materials used in this study.

References

  1. 1.
    C.J. Yu, H.H. Eifert, J. Banhart, and J. Baumeister: Mater. Res. Innovations, 1998, vol. 2, pp. 181-88.CrossRefGoogle Scholar
  2. 2.
    M.F. Ashby: Metal Foams: A Design Guide, 1st ed., Butterworth-Heinemann, Oxford, U.K., 2000, pp. 217-33.CrossRefGoogle Scholar
  3. 3.
    J. Banhart: Prog. Mater. Sci., 2001, vol. 46, pp. 559-632.CrossRefGoogle Scholar
  4. 4.
    F. Simancik: Metal Foams and Porous Metal Structures, J. Banhart, M.F. Ashby, and N.A. Fleck, eds., MIT Verlag, Bremen, 1999, pp. 235–40.Google Scholar
  5. 5.
    E. Koza, M. Leonowicz, S. Wojciechowski, and F. Simancik: Mater. Lett., 2003, vol. 58, pp. 132–35.Google Scholar
  6. 6.
    U. Ramamurthy and A. Paul: Acta Mater., 2004, vol. 52, pp. 869-76.CrossRefGoogle Scholar
  7. 7.
    M. Nosko, F. Simancik, and R. Florek: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5900-08.CrossRefGoogle Scholar
  8. 8.
    K.Y.G. McCullough, N.A. Fleck, and M.F. Ashby: Acta Mater., 1999, vol. 47, pp. 2331-43.CrossRefGoogle Scholar
  9. 9.
    J. Lázaro, E. Solórzano, J.A. de Saja, and M.A. Rodríguez-Pérez: J. Mater. Sci. In press.Google Scholar
  10. 10.
    B. Matijasevic and J. Banhart: Scripta Mater., 2006, vol. 54, pp. 503-08.CrossRefGoogle Scholar
  11. 11.
    F. Zeppelin, M. Hirscher, H. Stanzick, and J. Banhart: Compos. Sci. Technol., 2003, vol. 63, pp. 2293-2300.CrossRefGoogle Scholar
  12. 12.
    A.R. Kennedy and V.H. Lopez: Mater. Sci. Eng. A, 2003, vol. 357, pp. 258-63.CrossRefGoogle Scholar
  13. 13.
    B. Matijasevic, J. Banhart, S. Fiechter, O. Goerke, and N. Wanderka: Acta Mater., 2006, vol. 54, pp. 1887-1900.CrossRefGoogle Scholar
  14. 14.
    F. Garcia-Moreno and J. Banhart: Colloids Surf. A, 2007, vol. 309, pp. 264-69.CrossRefGoogle Scholar
  15. 15.
    C. Jimenez, F. Garcia-Moreno, M. Mukherjee, O. Goerke, and J. Banhart: Scripta Mater., 2009, vol. 61, pp. 552-55.CrossRefGoogle Scholar
  16. 16.
    M. Mukherjee, F. Garcia-Moreno, C. Jimenez, and J. Banhart: Adv. Eng. Mater., 2010, vol. 12, pp. 472-77.CrossRefGoogle Scholar
  17. 17.
    M.A. Rodriguez-Perez, E. Solórzano, J.A. de Saja, and F. Garcia-Moreno: Porous Metals and Metallic Foams, L.P. Lefebvre, J. Banhart, and D. Dunand, eds., DEStech Pub., Lancaster, PA, 2008, pp. 75–78.Google Scholar
  18. 18.
    L. Helfen, T. Baumbach, H. Stanzick, J. Banhart, A. Elmoutaouakkil, and P. Cloetens: Adv. Eng. Mater., 2002, vol. 4, pp. 808-13.CrossRefGoogle Scholar
  19. 19.
    A.R. Kennedy: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1555-57.CrossRefGoogle Scholar
  20. 20.
    A.R. Kennedy: Powder Metall., 2002, vol. 45, pp. 75-79.CrossRefGoogle Scholar
  21. 21.
    H.M. Helwig, S. Hiller, F. Garcia-Moreno, and J. Banhart: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 755-67.CrossRefGoogle Scholar
  22. 22.
    S. Asavavisithchai and A.R. Kennedy: Adv. Eng. Mater., 2006, vol. 8, pp. 810-15.CrossRefGoogle Scholar
  23. 23.
    S.W. Youn and C.G. Kang: J. Eng. Manuf., 2003, vol. 217, pp. 201-211.CrossRefGoogle Scholar
  24. 24.
    C. Körner, F. Berger, M. Arnold, C. Stadelmann, and R.F. Singer: Mater. Sci. Technol., 2000, vol. 16, pp. 781-84.CrossRefGoogle Scholar
  25. 25.
    D. Lehmhus and M. Busse: Adv. Eng. Mater., 2004, vol. 6, pp. 391-96.CrossRefGoogle Scholar
  26. 26.
    H.M. Helwig, F. Garcia-Moreno, and J. Banhart: J. Mater. Sci., 2011, vol. 46, pp. 5227-36.CrossRefGoogle Scholar
  27. 27.
    S.W. Youn and C.G. Kang: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 769-76.CrossRefGoogle Scholar
  28. 28.
    P.M. Proa-Flores, G. Mendoza-Suarez, and R.A.L. Drew: J. Mater. Sci., 2012, vol. 47, pp. 455-64.CrossRefGoogle Scholar
  29. 29.
    L. Bonaccorsi and E. Proverbio: Adv. Eng. Mater., 2006, vol. 8, pp. 864-69.CrossRefGoogle Scholar
  30. 30.
    L. Helfen, T. Baumbach, P. Pernot, P. Cloetens, H. Stanzick, K. Schladitz, and J. Banhart: Appl. Phys. Lett., 2005, vol. 86, pp. 231907-1– 231907-1-3.Google Scholar
  31. 31.
    W.D. Jones: Fundamental Principles of Powder Metallurgy, Edward Arnold Ltd., London, U.K., 1960.Google Scholar
  32. 32.
    B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, Boston, MA, 1956, pp. 272-76.Google Scholar
  33. 33.
    M.D. Abramoff, P.J. Magelhaes, and S.J. Ram: Biophys. Int., 2004, vol. 11, pp. 36-42.Google Scholar
  34. 34.
    E. Solórzano, M. Antunes, C. Saiz-Arroyo, M.A. Rodriguez-Perez, J.I. Velasco, and J.A. de Saja: J. Appl. Polym. Sci., 2011, vol. 125, pp. 1059–67.Google Scholar
  35. 35.
    B. Ren and J.G. Morris: Metall. Mater, Trans. A, 1995, vol. 26A, pp. 31-40.CrossRefGoogle Scholar
  36. 36.
    H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, Springer, Berlin, 2004.Google Scholar
  37. 37.
    J. Hirsch and K. Lücke: Acta Metall., 1988, vol. 36, pp. 2863-82.CrossRefGoogle Scholar
  38. 38.
    J. Liu and J.G. Morris: Mater. Sci. Eng. A, 2003, vol. 357, pp. 277-96.CrossRefGoogle Scholar
  39. 39.
    X.Y. Wen, Z.D. Long, W.M. Yin, T. Zhai, Z. Li, and S.K. Das: Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 245–51.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Jaime Lázaro
    • 1
  • Ester Laguna-Gutiérrez
    • 1
  • Eusebio Solórzano
    • 1
  • Miguel Angel Rodríguez-Pérez
    • 1
  1. 1.Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of ScienceUniversity of ValladolidValladolidSpain

Personalised recommendations