Metallurgical and Materials Transactions B

, Volume 44, Issue 3, pp 653–670 | Cite as

Toward a Full Simulation of the Basic Oxygen Furnace: Deformation of the Bath Free Surface and Coupled Transfer Processes Associated with the Post-Combustion in the Gas Region

  • Y. Doh
  • P. Chapelle
  • A. Jardy
  • G. Djambazov
  • K. Pericleous
  • G. Ghazal
  • P. Gardin
Article

Abstract

The present article treats different phenomena taking place in a steelmaking converter through the development of two separate models. The first model describes the cavity produced at the free surface of the metal bath by the high-speed impinging oxygen jet. The model is based on a zonal approach, where gas compressibility effects are taken into account only in the high velocity jet region, while elsewhere the gas is treated as incompressible. The volume of fluid (VOF) method is employed to follow the deformation of the bath free surface. Calculations are presented for two- and three-phase systems and compared against experimental data obtained in a cold model experiment presented in the literature. The influence on the size and shape of the cavity of various parameters and models (including the jet inlet boundary conditions, the VOF advection scheme, and the turbulence model) is studied. Next, the model is used to simulate the interaction of a supersonic oxygen jet with the surface of a liquid steel bath in a pilot-scale converter. The second model concentrates on fluid flow, heat transfer, and the post-combustion reaction in the gas phase above the metal bath. The model uses the simple chemical reaction scheme approach to describe the transport of the chemical species and takes into account the consumption of oxygen by the bath and thermal radiative transfer. The model predictions are in reasonable agreement with measurements collected in a laboratory experiment and in a pilot-scale furnace.

References

  1. 1.
    R.B. Banks and D.V. Chandrasekhara: J. Fluid Mech., 1963, vol. 15, pp. 13-35.CrossRefGoogle Scholar
  2. 2.
    A. Nordquist, N. Kumbhat, L. Jonsson and P. Jonsson: Steel Res. Int., 2006, vol. 77, pp. 82-90.Google Scholar
  3. 3.
    O. Olivares, A. Elias, R. Sanchez, M. Diaz-Cruz and R. Morales: Steel Res., 2002, vol. 73, pp. 44-51.Google Scholar
  4. 4.
    A.V. Nguyen and G.M. Evans: Applied Mathematical Modelling, 2006, vol. 30, pp. 1472-1484.CrossRefGoogle Scholar
  5. 5.
    H. Odenthal, J. Kempken, J. Schluter and W. Emling: Iron Steel Technol., 2007, vol. 4, pp. 71-89.Google Scholar
  6. 6.
    M. Ersson, L. Hoglund, A. Tilliander, L. Jonsson and P. Jonsson: ISIJ Int., 2008, vol. 48, pp. 147-153.CrossRefGoogle Scholar
  7. 7.
    L. Zhang and F. Oeters: Steel Res., 1991, vol. 62, pp. 95-106.Google Scholar
  8. 8.
    L. Zhang and F. Oeters: Steel Res., 1991, vol. 62, pp. 107-116.Google Scholar
  9. 9.
    H. Gou, G. Irons and W. Lu: Metall. Trans. B, 1993, vol. 24, pp. 179-188.CrossRefGoogle Scholar
  10. 10.
    J. Huber, J. Lehmann and R. Cadet: Rev. Metall. (Paris), 2008, vol. 105, pp. 121–26.Google Scholar
  11. 11.
    N. Croft, K. Pericleous, and M. Cross: Numerical Methods in Laminar and Turbulent Flow, vol. 9, Part 2, edited by C. Taylor and P. Durbetki, Pineridge Press, Swansea, U.K., 1995, pp. 1269-1280.Google Scholar
  12. 12.
    B.E. Launder and D.B. Spalding: Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 1972.Google Scholar
  13. 13.
    K.S. Abdol-Hamid, S.P. Pao, S.J. Massey and A. Elmiligui: Trans. ASME, 2004, vol. 126, pp. 844-850.Google Scholar
  14. 14.
    M. Alam, J. Naser and G. Brooks: Metall. Trans. B, 2010, vol. 41B, pp. 636-645.CrossRefGoogle Scholar
  15. 15.
    B. Lebon: Ph.D. Thesis, University of Greenwich, London, 2011.Google Scholar
  16. 16.
    I. Sumi, Y. Kishimoto, Y. Kikuchi and H. Igarashi: ISIJ Int., 2006, vol. 46, pp. 1312-1317.CrossRefGoogle Scholar
  17. 17.
    S.T. Johansen, J. Wu and W. Shyy: Int. J. Heat Fluid Flow, 2004, vol. 25, pp. 10-21.CrossRefGoogle Scholar
  18. 18.
    C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-225.CrossRefGoogle Scholar
  19. 19.
    K. Pericleous, G. Djambazov, B. Lebon, T.N. Croft, J.F. Domgin, and P. Gardin: Rev. Metall. (Paris), 2008, vol. 105, pp. 207–217.Google Scholar
  20. 20.
    H. Wang, G. Djambazov, K.A. Pericleous, R.A. Harding and M. Wickins: Computers & Fluids, 2011, vol. 42, pp. 92–101.CrossRefGoogle Scholar
  21. 21.
    Z. Kountouriotis, K. Pericleous, G. Djambazov, J.F. Domgin, and P. Gardin: Proceedings of the 8th International Conference on CFD in the Oil & Gas, Metallurgical and Process Industries. E SINTEF Research Reports, SINTEF, Norway, 2012, ISBN 9788214052626.Google Scholar
  22. 22.
    G.S.B. Lebon, M.K. Patel, G. Djambazov and K.A. Pericleous: Computers & Fluids, 2012, vol. 59, pp. 91-100.CrossRefGoogle Scholar
  23. 23.
    D. Wheeler: Ph.D. Thesis, University of Greenwich, London, 2000.Google Scholar
  24. 24.
    B.E. Launder, W.C. Reynolds, W. Rodi, J. Mathieu, and D. Jeandel: Turbulence Models and Their Applications, Paris, Eyrolles, 1984.Google Scholar
  25. 25.
    D.B. Spalding: Combustion and Mass Transfer, Pergamon Press, Oxford, 1979.Google Scholar
  26. 26.
    L. Hjertager, B. Hjertager and T. Solberg: Comput. Chem. Eng., 2002, vol. 26, pp. 507-515.CrossRefGoogle Scholar
  27. 27.
    Y. Doh: Ph.D. Thesis, Université de Lorraine, Nancy, 2012.Google Scholar
  28. 28.
    F. Qian, R. Mutharasan and B. Farouk: Metall. Trans. B, 1996, vol. 27B, pp. 911-920.CrossRefGoogle Scholar
  29. 29.
    A. Kaizawa, N. Sasaki, T. Inomoto, and Y. Ogawa: Proceeding of the 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, SINTEF/NTNU, Trondheim, Norway, 2011, Paper CFD11-88.Google Scholar
  30. 30.
    N.A. Molloy: J. Iron Steel Inst., 1970, vol. 208, pp. 943-950.Google Scholar
  31. 31.
    T. Kumagai and M. Iguchi: ISIJ Int., 2001, vol. 41, pp. S52-S55.CrossRefGoogle Scholar
  32. 32.
    B.E. Launder: Int. J. Heat Fluid Flow, 1989, vol. 10, pp. 282-300.CrossRefGoogle Scholar
  33. 33.
    S.C. Koria and K.W. Lange: Steel Res., 1987, vol. 58, pp. 421-426.Google Scholar
  34. 34.
    M. Hirai, R. Tsujino, T. Mukai, T. Harada and M. Omori: Trans. Iron Steel Inst. Jpn, 1987, vol. 27, pp. 805-813.CrossRefGoogle Scholar
  35. 35.
    N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1102–109.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Y. Doh
    • 1
    • 2
  • P. Chapelle
    • 1
  • A. Jardy
    • 1
  • G. Djambazov
    • 3
  • K. Pericleous
    • 3
  • G. Ghazal
    • 4
  • P. Gardin
    • 4
  1. 1.Institut Jean LamourCNRS-Université de LorraineNancy CedexFrance
  2. 2.Hutchinson CompanyMontargisFrance
  3. 3.Centre for Numerical Modelling and Process AnalysisUniversity of GreenwichLondonUK
  4. 4.ArcelorMittal ResearchMaizières-les-Metz CedexFrance

Personalised recommendations