Metallurgical and Materials Transactions B

, Volume 44, Issue 1, pp 98–105 | Cite as

Limestone Dissolution in Converter Slag at 1873 K (1600 °C)

  • Tengfei Deng
  • Patrice Nortier
  • Mattias Ek
  • Du Sichen


Decomposition and dissolution of limestone in slag at 1873 K (1600 °C) were studied. The limestone samples were in the shape of cubes (11 mm × 11 mm × 11 mm approximately). The decomposition was carried out both in argon and in slag under argon atmosphere. In order to gain an insight into the phenomenon of slow decomposition, the decomposition process of CaCO3 was simulated using Comsol. The results showed evidently that the decomposition of calcium carbonate was controlled mostly by heat transfer. It was also found that the decomposition product CaO had very dense structure, whether the sample was decomposed in slag or in argon. The slow decomposition and the dense CaO layer would greatly hinder the dissolution of lime in the slag. The present results clearly indicate that the addition of limestone instead of lime would not be beneficial in the converter process.


Lime Calcium Carbonate Converter Slag Dicalcium Silicate Equilibrium Partial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Dr. Thierry Chopin for his valuable suggestions and stimulating discussions. Financial support and lime samples from Lhoist are gratefully acknowledged.


  1. 1.
    J. Johnston: J. Am. Chem. Soc., 1910, Vol. 32, pp. 938-946.CrossRefGoogle Scholar
  2. 2.
    J M. Criado, M. González, J. Málek, and A. Ortega: Thermochimica Acta, 1995, Vol.: 254, pp. 121-127.CrossRefGoogle Scholar
  3. 3.
    A. W. D. Hills: Chem. Eng. Sci. 1968, Vol. 23, pp. 297-320.CrossRefGoogle Scholar
  4. 4.
    G. Narsimhan: Chem. Eng. Sci. 1961, Vol. 16, pp. 7-20.CrossRefGoogle Scholar
  5. 5.
    P. A. Simell, J. K. Leppälahti and E. A. Kurkela: Fuel, 1995, Vol. 74, pp. 938-945.CrossRefGoogle Scholar
  6. 6.
    F. W. Wilburn, J. H. Sharp, D. M. Tinsley and R. M. Mcintosh: J. Therm. Anal. 1991, Vol. 37, pp. 2003-2019.CrossRefGoogle Scholar
  7. 7.
    G. K. Jacobs, D. M. Kerrick and K. M. Krupka: Phys Chem Minerals, 1981, Vol. 7, pp. 55-59.CrossRefGoogle Scholar
  8. 8.
    D. Dollimore, P. Tong and K. S. Alexander: Thermochinica Acta, 1996, Vols. 282-83, pp. 13-27.CrossRefGoogle Scholar
  9. 9.
    F. R. Campbell, A. W. D Hills and A. Paulin: Chem. Eng. Sci., 1970, Vol. 25, pp. 929-942.CrossRefGoogle Scholar
  10. 10.
    H.L.J. Bäckström (1925) J. Am. Chem. Soc. 47:2443-2449.CrossRefGoogle Scholar
  11. 11.
    H. Li, L. Guo, Y. Li, W. Song, J. Feng, M. Liang, D. Dong, G. Wang, H. Zhang, S. Li, T. Zhang (2011) Advanced Materials Research. 233-235:2644-2647.CrossRefGoogle Scholar
  12. 12.
    W. Song, H. Li, L. Guo, P. Yan, Y. Li, and J. Feng: Materials for Renewable Energy & Environment (ICMREE), 2011 International Conference, 2011, Shanghai, pp. 991–94.Google Scholar
  13. 13.
    T. Deng, J. Gran, D. Sichen (2010) Steel Res. Int. 81(5):347-355.CrossRefGoogle Scholar
  14. 14.
    Slag Atlas: Verein Deutscher Eisenhüttenleute, 2nd ed., Düsseldorf, Germany, 1995, p. 32.Google Scholar
  15. 15.
    T. Deng, B. Glaser, D. Sichen (2012) Steel Res. Int. 83:259-268.CrossRefGoogle Scholar
  16. 16.
    CC Satterfield, F Feakes (1959) Aiche J 5(1):115-122.CrossRefGoogle Scholar
  17. 17.
    COMSOL Multiphysics, Version: COMSOL 4.2a, COMSOL AB, Stockholm, Sweden, October 2011.Google Scholar
  18. 18.
    P.C. Hayes: Process Principles in Minerals and Materials Production, Hayes Publishing Co, Brisbane, 1993, pp. 635, 638, 644; ISBN: 0-9589197-2-0.Google Scholar
  19. 19.
    D.H. Do and E, Specht: Proceedings of the World Congress on Engineering and Computer Science 2011 Vol. II. WCECS 2011, October 19–21, 2011, San Francisco, USA. ISBN: 978-988-19251-7-6 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online).Google Scholar
  20. 20.
    P. A. C. Gane, C.J. Ridgway, J. Schoelkopf, D.W. Bousfield: Journal of Pulp and Paper Science, 2007, Vol. 33, pp. 60–70.Google Scholar
  21. 21.
    T. Deng and D. Sichen: Metall. Mater. Trans. B, 2012, Vol. 43B, pp. 578–86.CrossRefGoogle Scholar
  22. 22.
    K. Elert, C. Rodriguez-Navarro, E. S. Rardo, E. Hansen and O. Cazalla: Studies in Conservation, 2002, Vol. 47, pp. 62-75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Tengfei Deng
    • 1
  • Patrice Nortier
    • 2
  • Mattias Ek
    • 1
  • Du Sichen
    • 1
  1. 1.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.Laboratoire de Génie des Procédés Papetiers (LGP2)UMR CNRS 5518Saint-Martin-d’HèresFrance

Personalised recommendations