Metallurgical and Materials Transactions B

, Volume 43, Issue 6, pp 1413–1419 | Cite as

Thermal Conductivity of Molten Silicate of Al2O3-CaO-Na2O-SiO2 Measured by Means of a Front Heating-Front Detection Laser Flash Method

  • Hiroki Hasegawa
  • Takaya Kowatari
  • Yasuhiro Shiroki
  • Hiroyuki Shibata
  • Hiromichi Ohta
  • Yoshio Waseda


Thermal conductivity values have been systematically obtained for molten silicates containing Al2O3, CaO, Na2O, and SiO2 by means of a front heating-front detection laser flash method. The measurements were made for 13 samples in the temperature range between 1073 K and 1823 K (800 °C and 1550 °C), depending on the composition. Thermal conductivities of the silicate melts are found to be relatively insensitive to the variation of temperature, but they depend on the composition ratio, particularly the ratio of Non-Bridging Oxygen ions per Tetrahedrally coordinated cation—NBO/T. The thermal conductivity values decrease from 2.8 W/mK to 1.5 W/mK with the NBO/T value until it reaches about 1. Thermal conductivity values become constant for silicate melts with a higher value of NBO/T. It is known that the length of the silicate chain decreases with disconnection by the addition of alkaline earth cation or alkaline cation. The strong correlation between thermal conductivity and NBO/T is quite likely to suggest that silicate chain is a preferential path for heat transport in silicate melts.


Thermal Conductivity Na2O Platinum Crucible Laser Flash Thermal Effusivity 



This research was supported in part by KAKENHI, Grant-in-Aid for Scientific Research (B) (No. 23360332) and (C) (No. 15560640), Japan Society for the Promotion of Science, and by Tanikawa Fund, Promotion of Thermal Technology. Support from the Cooperative Research Program of “Network Joint Research Center for Materials and Devices, Institute of Multidisciplinary Research for Advanced Materials Division of Materials, Tohoku University” is also appreciated.


  1. 1.
    K.C. Mills and M. Suza: Slag Atlas, 2nd ed., Verlag Sthahleisen GmbH, Düsseldorf, 1995, pp. 591–600.Google Scholar
  2. 2.
    K.C. Mills: Iron Steel Inst. Jpn. Int., 1993, vol. 33, no. 1, pp. 148–55.CrossRefGoogle Scholar
  3. 3.
    K. Nagata, M. Susa and K.S. Goto: Tetsu-to-Hagane, 1983, vol. 69, no.11, pp. 1417–24.Google Scholar
  4. 4.
    K. Nagata and K.S. Goto: Proc. 2 nd Int. Symp. Metallugical Slags and Fluxes, H.A. Fine and D.R. Gaskell, eds., Metallurgical Society of AIME, Lake Tahoe, Nevada, 1984, pp. 875–89.Google Scholar
  5. 5.
    R. Eriksson and S. Seetharaman: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 461–69.CrossRefGoogle Scholar
  6. 6.
    Y. Kang and K. Morita: ISIJ Int., 2006, vol. 46, no. 3, pp. 420–26.CrossRefGoogle Scholar
  7. 7.
    H. Hasegawa, Y. Hoshino, T. Kasamoto, Y. Akaida, T. Kowatari, Y. Shiroki, H. Shibata, H. Ohta, and Y. Waseda: Metall. Mater. Trans. B, 2012, in press.Google Scholar
  8. 8.
    H. Ohta and Y. Waseda: Molten Salt Techniques, vol. 4, Plenum, New York, 1991, pp. 132–43.Google Scholar
  9. 9.
    H. Shibata, H. Ohta, and Y. Waseda; High-Temperature Measurements of Materials, vol. 11, Springer, Heidelberg, 2008, pp. 85–110.Google Scholar
  10. 10.
    H. Ohta, H. Shibata, A. Suzuki, and Y. Waseda: Rev. Sci. Instrum. 2001, vol. 72, no.3, pp. 1899–903.CrossRefGoogle Scholar
  11. 11.
    H. Shibata, A. Suzuki and H. Ohta: Mater. Trans., 2005, vol. 46, no.8, pp. 1877–81.CrossRefGoogle Scholar
  12. 12.
    H. Ohta, H. Shibata and T. Kasamoto: ISIJ Int., 2006, vol. 46, no. 3, pp. 434–40.CrossRefGoogle Scholar
  13. 13.
    E.M. Levin, L.P. Cook, C.R. Robbins, and H.F. McMurdie: Phase Diagrams for Ceramists, 1st ed., American Ceramic Society, Columbus, 1964, pp. 219–21.Google Scholar
  14. 14.
    H. Ohta, H. Shibata, H. Hasegawa, T. Kowatari, Y. Shiroki, S. Kitamura, and Y. Waseda: J. Manuf. Sci. Prod., 2012.Google Scholar
  15. 15.
    Japan Society of Thermophysical Properties: Thermophysical Properties Handbook, 1st ed., Yonendo, Tokyo, 1990, pp. 20–24.Google Scholar
  16. 16.
    S. Ozawa and M. Susa, Ironmaking Steelmaking, 2005, vol. 32, no. 6, pp. 487–93.CrossRefGoogle Scholar
  17. 17.
    Y. Nagasaka and A. Nagashima, J. Phys. E, 1981, vol. 14, no. 2, pp. 1435–40CrossRefGoogle Scholar
  18. 18.
    W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics, 2nd ed., Wiley, New York, 1976, pp. 625–26.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  • Hiroki Hasegawa
    • 1
  • Takaya Kowatari
    • 1
  • Yasuhiro Shiroki
    • 1
  • Hiroyuki Shibata
    • 2
  • Hiromichi Ohta
    • 3
  • Yoshio Waseda
    • 2
  1. 1.Graduate School of Science and EngineeringIbaraki UniversityIbarakiJapan
  2. 2.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  3. 3.Department of Materials EngineeringIbaraki UniversityIbarakiJapan

Personalised recommendations