Metallurgical and Materials Transactions B

, Volume 44, Issue 2, pp 233–243

Trace Elements in the Si Furnace. Part I: Behavior of Impurities in Quartz During Reduction

  • Elena Dal Martello
  • Gabriella Tranell
  • Oleg Ostrovski
  • Guangqing Zhang
  • Ola Raaness
  • Rune Berg Larsen
  • Kai Tang
  • Pramod Koshy


Quartz and carbonaceous materials, which are used in the production of silicon as well as electrodes and refractories in the silicon furnace, contain trace elements mostly in the form of oxides. These oxides can be reduced to gaseous compounds and leave the furnace or stay in the reaction products—metal and slag. This article examines the behavior of trace elements in hydrothermal quartz and quartzite in the reaction of SiO2 with Si or SiC. Mixtures of SiO2 (quartz or quartzite), SiC, and Si in forms of lumps or pellets were heated to 1923 K and 2123 K (1650°C and 1850°C) in high purity graphite crucibles under Argon gas flow. The gaseous compounds condensed in the inner lining of the tube attached to the crucible. The phases present in the reacted charge and the collected condensates were studied quantitatively by X-ray diffraction (XRD) and qualitatively by Electron Probe Micro Analyzer (EPMA). Contaminants in the charge materials, reacted charge and condensate were analyzed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Muscovite in the mineral phase of quartz melted and formed two immiscible liquid phases: an Al-rich melt at the core of the mineral, and a SiO2-rich melt at the mineral boundaries. B, Mn, and Pb in quartz were removed during heating in reducing atmosphere at temperature above 1923 K (1650°C). Mn, Fe, Al and B diffused from quartz into silicon. P concentration was under the detection limit. Quartzite and hydrothermal quartz had different initial impurity levels: quartzite remained more impure after reduction experiment but approached purity of hydrothermal quartz upon silica reduction.


  1. 1.
    Panel Discussion: Crystal Clear in the 6th Framework of Program of EU. Amsterdam, 2008.Google Scholar
  2. 2.
    H. Yao, H. Minato, I.S.N. Mkilaha, and I. Naruse: J. Jpn. I. Met., 2001, pp. 256–62.Google Scholar
  3. 3.
    Q. Wang, J. Qiu, Y. Liu, and C. Zheng: Fuel Process. Technol., 2004. 85: p. 1431-1441.CrossRefGoogle Scholar
  4. 4.
    M. Garcia and E.H. Myrhaug: Revisjon av materialbalanse for sporelementer i Si-ovn basert på målekampanje på Elkem Thamshavn April 2007. Elkem Silicon, Oslo, 2007.Google Scholar
  5. 5.
    E.H. Myrhaug and H. Tveit: Electric Furnace Conference Proceedings, vol. 58. AIST, Warrendale, PA, 2000, pp. 591–04.Google Scholar
  6. 6.
    R. Kvande, L. Nygaard, S. Stute, and P.C.P. Bronsveld: 25th European Photovoltaic Solar Energy Conference and Exhibition/Conference on Photovoltaic Energy Conversion, Valencia, Spain, 2010.Google Scholar
  7. 7.
    E. Dal Martello, S. Bernardis, G. Tranell, R. Larsen, and M. Di Sabatino: Powder Technol., 2012, vol. 224, pp. 209–16.Google Scholar
  8. 8.
    T. Hammouda and M. Pichavant: Eur. J. Min., 1999, vol. 11, pp. 637–53.Google Scholar
  9. 9.
    H. Deer and J. Zussman: An Introduction to The Rock-Forming Minerals. Longman Scientific and Technical, New York, 1992Google Scholar
  10. 10.
    R.B. Larsen, I. Henderson, P.M. Ihlen, F. Jacamon: Contrib. Min. Petrol, 2004, vol. 147, pp. 615–28.Google Scholar
  11. 11.
    I. Samson, A. Anderson, and D. Marshall: Fluid Inclusions: Analysis and Interpretation, vol. 32. Mineralogical Association of Canada, Vancouver, 2003.Google Scholar
  12. 12.
    B. Flem, R.B. Larsen, A. Grimstvedt, and J. Mansfeld: Chem. Geol., 2002, vol. 182, pp. 237–47.Google Scholar
  13. 13.
    G.H. Frischat: Ber Deut Keram Ges, 1970, vol. 47, pp. 364–68.Google Scholar
  14. 14.
    J. Verhoogen: Am Min., 1952, vol. 37, pp. 637–55.Google Scholar
  15. 15.
    G.H. Frischat: J. Am. Ceram. Soc., 1970, vol. 53, pp. 357–60.Google Scholar
  16. 16.
    R. Pankrath and O.W. Florke: Eur. J. Min., 1994, vol. 6, pp. 435–57.Google Scholar
  17. 17.
    S.C. Penniston-Dorland: Am Min., 2001, vol. 86 (5–6), pp. 652–66.Google Scholar
  18. 18.
    H.D. Stock and G. Lehmann: J. Phys. Chem. Solids, 1976, vol. 38, pp. 243–46.Google Scholar
  19. 19.
    D.J. Cherniak, E.B. Watson, and D.A. Wark: Chem. Geol., 2007, vol. 236, pp. 65–74.Google Scholar
  20. 20.
    A.C.D. Chaklader and A.L. Roberts: J. Am. Cer. Soc., 1961, vol. 44 (1), pp. 35–41.Google Scholar
  21. 21.
    V. Presser and K.G. Nickel: Crit. Rev. Solid State Mater. Sci., 2008, vol. 33, pp. 1–99.Google Scholar
  22. 22.
    A. Amington and J. Balascio: 38th Annual Symposium on Frequency Control, 1984, pp. 3–7.Google Scholar
  23. 23.
    A. Muller, W. B.J., and M. Smith, Mineralogical Magazine, 2005. 69(4): p. 381-401.CrossRefGoogle Scholar
  24. 24.
    Larsen, R.B., F. Jacamon, and A. Kronz, Mineralogical Magazine, 2009. 73(4): p. 691-707.CrossRefGoogle Scholar
  25. 25.
    R.B. Larsen, I. Henderson, and P.M. Ihlen: Contrib. Min. Petrol, 2004, vol. 147, pp. 615–28.Google Scholar
  26. 26.
    E.J.W. Whittaker and R. Muntus: Geochim Cosmochim Ac, 1970, vol. 34, pp. 945–56.Google Scholar
  27. 27.
    E. Dal Martello, G. Tranell, O. Ostrovski, G. Zhang, O. Raaness, R. Larsen, and P. Koshy: (2011). Metall. Mater. Trans. B 42(5): 939-950.CrossRefGoogle Scholar
  28. 28.
    E. Dal Martello, G. Tranell, S. Gaal, and L. Arnberg: ISIJ Int., 2011. 51(9): p. 1492-1496.CrossRefGoogle Scholar
  29. 29.
    Stoch, L., M. Laczka, and I. Waclawska, Mineralogia Polonica, 1985. 16(2): p. 43-54.Google Scholar
  30. 30.
    Astimex: 26th June 2011.
  31. 31.
    Australia Co.S.: Coal and Coke-Analysis and testing Part4: Coke -Proximate analysis. 2006, Standards Australia GPO Box 476, Sydney, NSW, Australia, 2001.Google Scholar
  32. 32.
    V. Andersen: Investigation of Thermal Properties of Quartz for the Silicon Industry Under Reducing Atmosphere, Department of materials science and engineering. NTNU, Trondheim, 2009.Google Scholar
  33. 33.
    T. Kawasaki and H. Ishizuka: J. Miner. Petrol. Sci., 2008, vol. 103, pp. 255–65.Google Scholar
  34. 34.
    Scherer, G., P.J. Vergano, and D.R. Uhlmann, Phys. Chem. Glasses, 1970. 11(3): p. 53-58.Google Scholar
  35. 35.
    Mitra, S., Trans. J. Brit. Ceram. Soc., 1977. 76(4): p. 71-74.Google Scholar
  36. 36.
    V. Balek, J. Fusek, J. Křiž, and M. Murat: Thermoc. Acta, 1995, vol. 262, pp. 209–14.Google Scholar
  37. 37.
    Benezet, J.C. and A. Benhassaine, Powder Technol 1999. 105(1) pp 167–71.CrossRefGoogle Scholar
  38. 38.
    Steinike, U. and K. Tkáčová, J Mater Synth Proces, 2000. 8: p. 197-203.CrossRefGoogle Scholar
  39. 39.
    Damn, C. and W. Peukert, Langmuir, 2009. 25: p. 2264-2270.CrossRefGoogle Scholar
  40. 40.
    Ford, H.M., S.M. Auerbach, and P.A. Monson, J. Chem. Phys., 2004. 121(17): p. 8415-8422.CrossRefGoogle Scholar
  41. 41.
    B. Zhu, Y. Sun, and C. Xie: J. China Coal Soc., 2008, pp. 1049–52.Google Scholar
  42. 42.
    J.B. Fein, J.J. Hemley, W.M. D'Angelo, A. Komninou, and D.A. Sverjensky: Geochim Cosmochim Ac., 1992, vol. 56, pp. 3179–90.Google Scholar
  43. 43.
    M. Gemeinert, M. Gaber, I. Hager, M. Willfahrt, and D. Bortschuloun: Neues Jahrbuch Miner. Abh., 1992. 165(1): p. 19-27.Google Scholar
  44. 44.
    P. Atkins and J. de Paula: Atkins’ Physical Chemistry, 7th ed. Oxford University Press Inc, New York, 2002.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Elena Dal Martello
    • 1
  • Gabriella Tranell
    • 1
  • Oleg Ostrovski
    • 2
  • Guangqing Zhang
    • 3
  • Ola Raaness
    • 4
  • Rune Berg Larsen
    • 1
  • Kai Tang
    • 4
  • Pramod Koshy
    • 2
  1. 1.NTNUTrondheimNorway
  2. 2.UNSWSydneyAustralia
  3. 3.UOWWollongongAustralia
  4. 4.SINTEFTrondheimNorway

Personalised recommendations