Metallurgical and Materials Transactions B

, Volume 43, Issue 5, pp 1231–1240 | Cite as

Effect of Mn, Si, and Cooling Rate on the Formation of Iron-Rich Intermetallics in 206 Al-Cu Cast Alloys



The solidification structures of commercial 206 Al-Cu cast alloys with 0.15 pct Fe have been studied using thermal analysis (TA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD). The EBSD results have shown that there are two iron-rich intermetallics: Chinese script α-Fe and platelet-like β-Fe. The addition of either Mn or Si has helped to promote the formation of α-Fe and hinder the precipitate of β-Fe. The combined addition of both Mn and Si is even more effective than the individual addition of either Mn or Si. The full solidification sequence of the 206 cast alloy has been established. The volume percent and formation temperature increase for α-Fe but decrease for β-Fe with increasing cooling rate. The platelet β-Fe can be effectively suppressed in 206 cast alloys by controlling the alloy chemistry and cooling rate. A casting process map is proposed to correlate the Mn and Si contents with cooling rates for the 206 cast alloys.


Cool Rate Cast Alloy High Cool Rate Experimental Alloy Increase Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Alcan, through the NSERC Industry Research Chair in Metallurgy of Aluminum Transformation at the University of Québec at Chicoutimi.


  1. 1.
    V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff: Casting Aluminum Alloys, Elsevier Science, Oxford, U.K., 2007.Google Scholar
  2. 2.
    Aluminum Association: Designations and Chemical Composition Limits for Aluminum Alloys in the Form of Castings and Ingot, Aluminum Association, Arlington, VA, 2009.Google Scholar
  3. 3.
    N.A. Belov, A.A. Aksenov, and D.G. Eskin: Iron in Aluminum Alloys: Impurity and Alloying Element, Taylor & Francis, London, U.K., 2002.Google Scholar
  4. 4.
    K. Liu, X. Cao, and X.G. Chen: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2004–16.CrossRefGoogle Scholar
  5. 5.
    M. Talamantessilva, A. Rodriguez, J. Talamantessilva, S. Valtierra, and R. Colas: Mater. Charact., 2008, vol. 59, pp. 1434–39.CrossRefGoogle Scholar
  6. 6.
    C.J. Tseng, S.L. Lee, S.C. Tsai, and C.J. Cheng: J. Mater. Res., 2002, vol. 17, pp. 2243–50.CrossRefGoogle Scholar
  7. 7.
    L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworths, London, U.K., 1976.Google Scholar
  8. 8.
    K. Liu, X. Cao, and X.G. Chen: J. Mater. Sci., 2012, vol. 47, pp. 4290–98.CrossRefGoogle Scholar
  9. 9.
    H.K. Kamga, D. Larouche, M. Bournane, and A. Rahem: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2844–55.CrossRefGoogle Scholar
  10. 10.
    K. Liu, X. Cao, and X.G. Chen: Light Metal–Advances in Materials and Processes, D. Gallienne and M. Bilodeau, eds., Metals Society, Vancouver, BC, Canada, 2010, pp. 113–20.Google Scholar
  11. 11.
    K. Liu, X. Cao, and X.G. Chen: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1097–1101.Google Scholar
  12. 12.
    S. Seifeddine, S. Johansson, and I.L. Svensson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 385–90.CrossRefGoogle Scholar
  13. 13.
    S.G. Shabestari: Mater. Sci. Eng. A, 2004, vol. 383, pp. 289–98.Google Scholar
  14. 14.
    S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, and B.C. Pai: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 561–73.Google Scholar
  15. 15.
    A. Couture: Int. Cast Met. J., 1981, vol. 6, pp. 9–17.Google Scholar
  16. 16.
    L. Bäckerud: S. American Foundrymen’s, Solidification Characteristics of Aluminum Alloys, Skanaluminium, Universitetsforlaget AS, Oslo, Norway, 1986.Google Scholar
  17. 17.
    C.J. Tseng, S.L. Lee, T.F. Wu, and J.C. Lin: Mater. Trans. JIM, 2000, vol. 41, pp. 708–13.Google Scholar
  18. 18.
    X. Cao and J. Campbell: Mater. Trans. JIM, 2006, vol. 47, pp. 1303–12.CrossRefGoogle Scholar
  19. 19.
    X. Cao and J. Campbell: Can. Metall. Q., 2005, vol. 44, pp. 435–48.Google Scholar
  20. 20.
    X. Cao and J. Campbell: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1425–35.CrossRefGoogle Scholar
  21. 21.
    D.N. Miller, L. Lu, and A.K. Dahle: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 873–78.CrossRefGoogle Scholar
  22. 22.
    S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, and A.K. Dahle: Acta Mater., 2010, vol. 58, pp. 5370–80.CrossRefGoogle Scholar
  23. 23.
    Z. Ma, E. Samuel, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, and H.W. Doty: Mater. Des., 2010, vol. 31, pp. 902–12.CrossRefGoogle Scholar
  24. 24.
    S. Belmares-Perales, M. Castro-Román, M. Herrera-Trejo, and L.E. Ramirez-Vidaurri: Metall. Mater. Int., 2008, vol. 14, pp. 307–14.CrossRefGoogle Scholar
  25. 25.
    L. Lu and A.K. Dahle: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 819–35.Google Scholar
  26. 26.
    W. Khalifa, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 807–25.Google Scholar
  27. 27.
    A.M. Samuel, A. Pennors, C. Villeneuve, F.H. Samuel, H.W. Doty, and S. Valtierra: Int. J. Cast Met. Res., 2000, vol. 13, pp. 231–53.Google Scholar
  28. 28.
    C.L. Chen and R.C. Thomson: J. Alloys Compd., 2010, vol. 490, pp. 293–300.CrossRefGoogle Scholar
  29. 29.
    M. Kral: Scripta Mater., 2004, vol. 51, pp. 215–19.CrossRefGoogle Scholar
  30. 30.
    N.A. Belov, D.G. Eskin, and A.A. Aksenov: Multicomponent Phase Diagrams Applications for Commercial Aluminum Alloys, Elsevier, Boston, MA, 2005.Google Scholar
  31. 31.
    M. Warmuzek, J. Sieniawski, A. Gazda, and G. Mrówka: Adv. Mater. Sci., 2003, vol. 4, pp. 81–91.CrossRefGoogle Scholar
  32. 32.
    J.Y. Hwang, H.W. Doty, and M.J. Kaufman: Mater. Sci. Eng. A, 2008, vol. 488, pp. 496–504.CrossRefGoogle Scholar
  33. 33.
    L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1761–73.CrossRefGoogle Scholar
  34. 34.
    N. Han, X.F. Bian, Z.K. Li, T. Mao, and C.D. Wang: Acta Metall. Sinica, 2006, vol. 19, pp. 405–10.Google Scholar
  35. 35.
    H.K. Kamga, D. Larouche, M. Bournane, and A. Rahem: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7413–23.CrossRefGoogle Scholar
  36. 36.
    S.Q. Dong, J.E. Zhou, and W. Yan: Rare Met. Mater. Eng., 2005, vol. 34, pp. 1721–25.Google Scholar
  37. 37.
    H.K. Kamga, D. Larouche, M. Bournane, and A. Rahem: Int. J. Cast Met. Res., 2012, vol. 25, pp. 15–25.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of Québec at ChicoutimiChicoutimiCanada
  2. 2.Aerospace Manufacturing Technology CentreInstitute for Aerospace Research, National Research Council CanadaMontrealCanada

Personalised recommendations