Advertisement

Metallurgical and Materials Transactions B

, Volume 43, Issue 3, pp 494–502 | Cite as

Oxidation Behavior and Mechanism of Pentlandite at 973 K (700 °C) in Air

  • Huihui Zhu
  • Jun Chen
  • Jinxia Deng
  • Ranbo Yu
  • Xianran XingEmail author
Article

Abstract

The oxidation behavior of synthetic pentlandite at 973 K (700 °C) under isothermal conditions was investigated. The pentlandite sample (Ni,Fe)9S8 was synthesized from pure components and oxidized at 973 K (700 °C) in air in a muffle furnace. The phase identification and components analysis of the oxidation products were performed by using the Rietveld quantitative analysis method based on the powder X-ray diffraction (XRD) profiles and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The magnetic hysteresis loops were determined by a vibrating sample magnetometer. Fe2O3, Ni x Fe3-x O4, and NiO were dominant oxidation products, and their weight fractions changed in different ways along with the oxidation time. The nickel-rich phase and sulfur-rich phase were observed as intermediate phases in unreacted cores during oxidation, which led to the formation of gaps and holes. The oxidation reaction rate was rapid in the first 2 hours, and then it slowed down sharply.

Keywords

Hematite NiFe2O4 Oxidation Mechanism Magnetic Hysteresis Loop NiSO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported financially by Grant 2007CB613601 from the National Key Program for Basic Research of 973 Program and grants 20731001, 50725415, 50704003, and 21031005 National Natural Science Foundation of China.

References

  1. 1.
    Z.Y. Lu, M.I. Jeffrey, Y. Zhu, and F. Lawson: Hydrometallurgy, 2000, vol. 56, pp. 63–74.CrossRefGoogle Scholar
  2. 2.
    V. Rajamani and C.T. Prewitt: Can. Mineral., 1973, vol. 12, pp. 178–87.Google Scholar
  3. 3.
    K. Tsukimura and H. Nakazawa: Acta Crystallogr., Sect. B: Struct. Sci., 1984, vol. 40, pp. 364–67.CrossRefGoogle Scholar
  4. 4.
    K. Tsukimura: Mineral. J., 1989, vol. 14, pp. 323–37.CrossRefGoogle Scholar
  5. 5.
    A. Sugaki and A. Kitakaze: Am. Mineral., 1998, vol. 83, pp. 133–40.Google Scholar
  6. 6.
    B. Wu, X. Chen, and J. Huang: Min. Metall. Eng., 1986, vol. 6, pp. 6.Google Scholar
  7. 7.
    X. Zheng and X. Chen: Nonferrous Met., 1983, vol. 35, pp. 6.Google Scholar
  8. 8.
    T. Tanabe, K.I. Kawaguchi, Z. Asaki, and Y. Kondo: Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 9.Google Scholar
  9. 9.
    J.G. Dunn and C.E. Kelly: J. Therm. Anal. Calorim., 1980, vol. 18, pp. 147–54.CrossRefGoogle Scholar
  10. 10.
    V. Rajamani and C. Prewitt: Am. Mineral., 1975, vol. 60, p. 10.Google Scholar
  11. 11.
    G. Kullerud: Can. Mineral., 1963, vol. 7, pp. 353–66.Google Scholar
  12. 12.
    C. Tenailleau: Am. Mineral., 2006, vol. 91, pp. 1442–47.CrossRefGoogle Scholar
  13. 13.
    A. Sugaki and A. Kitakaze: 29th lnt. Geological Cong., Kyoto, Japan, 1992, vol. 3, p. 676.Google Scholar
  14. 14.
    A. Warner, C. Díaz, A. Dalvi, P. Mackey, A. Tarasov, and R. Jones: JOM, 2007, vol. 59, pp. 58–72.CrossRefGoogle Scholar
  15. 15.
    R. Pandher, S. Thomas, D. Yu, M. Barati, and T. Utigard: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 291–99.CrossRefGoogle Scholar
  16. 16.
    J.G. Dunn and C.E. Kelly: J. Therm. Anal. Calorim., 1977, vol. 12, pp. 43–52.CrossRefGoogle Scholar
  17. 17.
    J.G. Dunn: Thermochim. Acta, 1997, vol. 300, pp. 127–39.CrossRefGoogle Scholar
  18. 18.
    R. Pandher and T. Utigard: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 780–89.CrossRefGoogle Scholar
  19. 19.
    L.C. Mackey: Ph.D. Dissertation, Curtin University of Technology, Curtin, Australia, 1991.Google Scholar
  20. 20.
    T.E. Warner, N.M. Rice, and N. Taylor: Hydrometallurgy, 1992, vol. 31, pp. 55–90.CrossRefGoogle Scholar
  21. 21.
    D.L. Legrand, G.M. Bancroft, and H.W. Nesbitt: Am. Mineral., 2005, vol. 90, pp. 1042–54.CrossRefGoogle Scholar
  22. 22.
    D.L. Legrand, G.M. Bancroft, and H.W. Nesbitt: Am. Mineral., 2005, vol. 90, pp. 1055–61.CrossRefGoogle Scholar
  23. 23.
    S. Richarson and D.J. Vaughan: Mineral. Mag., 1989, vol. 53, pp. 10.Google Scholar
  24. 24.
    C. Tenailleau, A. Pring, B. Etschmann, J. Brugger, B. Grguric, and A. Putnis: Am. Mineral., 2006, vol. 91, pp. 706–09.CrossRefGoogle Scholar
  25. 25.
    Y. Peng, B. Wang, and D. Bradshaw: Miner. Eng., 2011, vol. 24, pp. 85–87.CrossRefGoogle Scholar
  26. 26.
    Y. Ngothai, F. Xia, A. Pring, B. O’Neill, J. Brugger, G. Chen, and C. Colby: Chemeca 2007 Conf., Sofitel Melbourne, Victoria, Australia, 2007.Google Scholar
  27. 27.
    D.J. Vaughan and R.G. Burns: Geol. Soc. Am. Abstr. Prog., 1971, vol. 3, pp. 1.Google Scholar
  28. 28.
    V.A. Drebushchak, T.A. Kravchenko, and V.S. Pavlyuchenko: J. Cryst. Growth, 1998, vol. 193, pp. 728–31.CrossRefGoogle Scholar
  29. 29.
    F. Xia, J. Zhou, J. Brugger, Y. Ngothai, B. O’Neill, G. Chen, and A. Pring: Chem. Mater., 2008, vol. 20, pp. 2809–17.CrossRefGoogle Scholar
  30. 30.
    H. Wang, A. Pring, Y. Xie, Y. Ngothai and B. O’Neill: Thermochim. Acta, 2005, vol. 427, pp. 13–25.CrossRefGoogle Scholar
  31. 31.
    H. Rietveld: Acta Cryst., 1967, vol. 22, pp. 151–52.CrossRefGoogle Scholar
  32. 32.
    E.H. Kisi: Mater. Forum, 1994, vol. 18. pp. 135–53.Google Scholar
  33. 33.
    L. Lutterotti and H. Wenk: 12 th Int. Conf. Textures of Mater. (ICOTOM-12), Montreal, Canada, 1999.Google Scholar
  34. 34.
    R.J. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20, pp. 467–74.CrossRefGoogle Scholar
  35. 35.
    A.P. Roberts, Y. Cui, and K.L. Verosub: J. Geophys. Res., 1995, vol. 100, pp. 17909–24.CrossRefGoogle Scholar
  36. 36.
    L.M. Pidgeon and P.G. Thornhill: JOM, 1957, vol. 209, pp. 7.Google Scholar
  37. 37.
    H. Seim, H. Fjellvâg, F. Grønvold, and S. Stølen: J. Solid State Chem., 1996, vol. 121, pp. 400–07.CrossRefGoogle Scholar
  38. 38.
    Y. Liu, L. Norén, R.L. Withers, J. Hadermann, G. Van Tendeloo, and F.J. García–García: J. Solid State Chem., 2003, vol. 170, pp. 351–60.CrossRefGoogle Scholar
  39. 39.
    E. Burger, D. Bourgarit, V. Frotté, and F. Pilon: J. Therm. Anal. Calorim., 2011, vol. 103, pp. 249–56.CrossRefGoogle Scholar
  40. 40.
    J.G. Dunn and A.C. Chamberlain: J. Therm. Anal. Calorim., 1991, vol. 37, pp. 1329–46.CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2012

Authors and Affiliations

  • Huihui Zhu
    • 1
  • Jun Chen
    • 1
  • Jinxia Deng
    • 2
  • Ranbo Yu
    • 1
  • Xianran Xing
    • 1
    Email author
  1. 1.Department of Physical ChemistryUniversity of Science & Technology BeijingBeijingP.R. China
  2. 2.Department of ChemistryUniversity of Science & Technology BeijingBeijingP.R. China

Personalised recommendations