Metallurgical and Materials Transactions B

, Volume 43, Issue 2, pp 316–324 | Cite as

Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets

  • K. JagannadhamEmail author


Samples of graphene composites with matrix of copper were prepared by electrochemical codeposition from CuSO4 solution with graphene oxide suspension. The thermal conductivity of the composite samples with different thickness and that of electrodeposited copper was determined by the three-omega method. Copper-graphene composite films with thickness greater than 200 μm showed an improvement in thermal conductivity over that of electrolytic copper from 380 W/m.K to 460 W/m.K at 300 K (27 °C). The thermal conductivity of copper-graphene films decreased from 510 W/m.K at 250 K (–23 °C) to 440 W/m.K at 350 K (77 °C). Effective medium approximation (EMA) was used to model the thermal conductivity of the composite samples and determine the interfacial thermal conductance between copper and graphene. The values of interface thermal conductance greater than 1.2 GW/m2.K obtained from the acoustic and the diffuse mismatch models and from the EMA modeling of the experimental results indicate that the interface thermal resistance is not a limiting factor to improve the thermal conductivity of the copper-graphene composites.


Thermal Conductivity Graphene Oxide Phonon Coupling Heat Spreader Quantitative Metallography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by National Science Foundation Grant CMMI #1049751.


  1. 1.
    E.M. Garmire and M.T. Tavis: IEEE J. Quant. Electron., 1984, vol. QE-20, pp. 1277–80.CrossRefGoogle Scholar
  2. 2.
    J. Piprek, J.K. White, and A.J. Spring Thorpe: IEEE J. Quant. Electron., 2002, vol. 38, pp. 1253–59.CrossRefGoogle Scholar
  3. 3.
    V.O. Turin: Electron. Lett., 2004, vol. 40, pp. 81–83.CrossRefGoogle Scholar
  4. 4.
    G.A. Slack: J. Appl. Phys., 1964, vol. 35, pp. 3460–66.CrossRefGoogle Scholar
  5. 5.
    G.A. Slack: Phys. Rev., 1962, vol. 127, pp. 694–701.CrossRefGoogle Scholar
  6. 6.
    P. Kim, L. Shi, A. Majumdar, and P.L. McEuen: Phys. Rev. Lett., 2001, vol. 87, pp. 215502-1–4.Google Scholar
  7. 7.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweidebrhan, F. Miao, and C.N. Lau: Nano Lett., 2008, vol. 92, pp. 151911-1–3.Google Scholar
  8. 8.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Nano Lett., 2008, vol. 8, pp. 902–07.CrossRefGoogle Scholar
  9. 9.
    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, and L. Shi: Science, 2010, vol. 328, pp. 213–16.CrossRefGoogle Scholar
  10. 10.
    R. Prasher: Proc. IEEE, 2006, vol. 94, pp. 1571–87.CrossRefGoogle Scholar
  11. 11.
    A.N. Sruti and K. Jagannadham: J. Elect. Mater., 2010, vol. 39, pp. 1268–76.CrossRefGoogle Scholar
  12. 12.
    K. Jaganandham: J. Elect. Mater., 2011, vol. 40, pp. 25–34.CrossRefGoogle Scholar
  13. 13.
    K. Jagannadham: J. Electrochem. Soc., in press.Google Scholar
  14. 14.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Carbon, 2007, vol. 45, pp. 1558–65.CrossRefGoogle Scholar
  15. 15.
    J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J. Huang: J. Amer. Chem. Soc., 2010, vol. 132, pp. 8180–86.CrossRefGoogle Scholar
  16. 16.
    E.E. Underwood: Applications of Quantitative Metallography, Mechanical Testing, Metals Handbook, 8th ed., vol. 8, ASM, Materials Park, OH, 1973, p. 37.Google Scholar
  17. 17.
    D.G. Cahill: Rev. Sci. Instrum., 1990, vol. 61, pp. 802–08.CrossRefGoogle Scholar
  18. 18.
    J.H. Kim, A. Feldman, and D. Novotny: J. Appl. Phys., 1999, vol. 86, pp. 3959–63.CrossRefGoogle Scholar
  19. 19.
    Y.S. Touloukian and E.H. Buyco: Thermophysical Properties of Matter, The TPRC Data Series, Specific Heat of Metallic Elements and Alloys, vol. 4, and Specific Heat of Nonmetallic Solids, vol. 5, IFI/Plenum, New York, NY, 1970.Google Scholar
  20. 20.
    J. Yang: in Thermal Conductivity: Theory, Properties, and Applications, T.M. Tritt, ed., Kluwer Academic/Plenum Press, New York, NY, 2004, p. 1.Google Scholar
  21. 21.
    S. Ghosh, D.L. Nika, E.P. Pokatilov, and A.A. Balandin: New J. Phys., 2009, vol. 11, pp. 095012-1–19.CrossRefGoogle Scholar
  22. 22.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau: Appl. Phys. Lett., 2008, vol. 92, pp. 151911-1–3.Google Scholar
  23. 23.
    D.L. Nika, E.P. Pokatilov, A.S. Askerov, and A.A. Balandin: Phys. Rev. B, 2009, vol. 79, pp. 155413-1–12.Google Scholar
  24. 24.
    D.L. Nika, S. Ghosh, E.P. Pokatilov, and A.A. Balandin: Appl. Phys. Lett., 2009, vol. 94, pp. 203103-1–3.Google Scholar
  25. 25.
    Z. Ghuo, D. Zhang, and X.G. Gong: Appl. Phys. Lett., 2009, vol. 95, pp. 163103-1–3.Google Scholar
  26. 26.
    P.G. Klemens: Int. J. Thermophysics, 2001, vol. 22, pp. 265–75.CrossRefGoogle Scholar
  27. 27.
    P.G. Klemens and D.F. Pedraza: Carbon, 1994, vol. 32, pp. 735–41.CrossRefGoogle Scholar
  28. 28.
    A. Majumdar and P. Reddy: Appl. Phys. Lett., 2004, vol. 84, pp. 4768–71.CrossRefGoogle Scholar
  29. 29.
    D.L. Martin: Phys. Rev. B, 1973, vol. 8, pp. 5357–60.CrossRefGoogle Scholar
  30. 30.
    A.C. Anderson and R.E. Peterson: Phys. Lett., 1972, vol. 38A, pp. 519–20.Google Scholar
  31. 31.
    R. Viana, H. Godfrin, E. Lerner, and R. Rapp: Phys. Rev. B, 1994, vol. 50, pp. 4875–77.CrossRefGoogle Scholar
  32. 32.
    R.S. Deacon, K.C. Chuang, R.J. Nicholas, K.S. Novoselov, and A.K. Gein: Phys. Rev. B, 2007, vol. 76, pp. 08140 6-1–4.Google Scholar
  33. 33.
    E.T. Swartz and R.O. Pohl: Rev. Mod. Phys., 1989, vol. 33, pp. 605–68.CrossRefGoogle Scholar
  34. 34.
    A. Minnich and G. Chen: Appl. Phys. Lett., 2007, vol. 91, pp. 073105-1–3.Google Scholar
  35. 35.
    B.C. Gundrum, D.G. Cahill, and R.S. Averback: Phys. Rev. B, 2005, vol. 72, pp. 245426-1–5.Google Scholar
  36. 36.
    A.J. Schmidt, K.C. Collins, A.J. Minnich, and G. Chen: J. Appl. Phys., 2010, vol. 107, pp. 104907-1–5.Google Scholar
  37. 37.
    A.J. Schmidt, K.C. Collins, A.J. Minnich, and G. Chen: Rev. Sci. Instrum., 2008, vol. 79, pp. 114902-1–9.Google Scholar
  38. 38.
    J.C. Duda, J.L. Smoyer, P.M. Norris, and P.E. Hopkins: Appl. Phys. Lett., 2009, vol. 95, pp. 031912-1–3.Google Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations