Metallurgical and Materials Transactions B

, Volume 42, Issue 3, pp 477–489 | Cite as

A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process

  • Marie-Aline van Ende
  • Young-Min Kim
  • Mun-Kyu Cho
  • Juhan Choi
  • In-Ho JungEmail author


A kinetic model (effective equilibrium reaction zone model) was developed to simulate the decarburization reaction in the Ruhrstahl Heraeus (RH) degassing process. The model assumes that the chemical reactions reach equilibrium in the designated effective reaction volumes near the reaction interfaces. After the RH degassing process was divided into various reaction zones, the effective reaction volumes of each reaction zone were expressed as a function of the process conditions based on the physical descriptions of the reaction mechanisms. The influence of the chemical reaction between the RH slag and the RH steel to the decarburization phenomena was considered for the first time. The calculated C and O profiles by the present model are in good agreement with the industrial operation data for various steel compositions and process conditions. RH slag can serve as an oxygen reservoir to supply O during the RH decarburization process, which induces the observed deviation of the C and O contents from their ideal stoichiometric trajectory. The present model provides an efficient tool to understand the RH degassing process.


Reaction Zone Decarburization Molten Steel Bubble Surface Bath Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank POSCO and the Research Institute of Industrial Science and Technology for their financial support and industrial run data.


  1. 1.
    T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. ISIJ, 1988, vol. 28, no. 4, pp. 305-14.Google Scholar
  2. 2.
    R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada: ISIJ Int., 1989, vol. 29, no. 7, pp. 589-95.CrossRefGoogle Scholar
  3. 3.
    Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori: ISIJ Int., 1993, vol. 33, no. 10, pp. 1088-94.CrossRefGoogle Scholar
  4. 4.
    Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40, no. 8, pp. 749-55.CrossRefGoogle Scholar
  5. 5.
    Y.G. Park and K.W. Yi: ISIJ Int., 2003, vol. 43, no. 9, pp. 1403-09.CrossRefGoogle Scholar
  6. 6.
    S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, no. 1, pp. 82-90.CrossRefGoogle Scholar
  7. 7.
    J.F. Domgin, P. Gardin, H. Saint-Raymond, F. Stouvenot, and D. Huin: Steel Res. Int., 2005, vol. 76, no. 1, pp. 5-12.Google Scholar
  8. 8.
    J.H. Wei and H.T. Hu: Steel Res. Int., 2006, vol. 77, no. 1, pp. 32-36.Google Scholar
  9. 9.
    D.Q. Geng, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 234-47.CrossRefGoogle Scholar
  10. 10.
    V. Seshadri and S. Costa: Trans. ISIJ, 1986, vol. 26, no. 2, pp. 133-38.Google Scholar
  11. 11.
    C. Kamata, S. Hayashi, and K. Ito: Tetsu-To-Hagané, 1998, vol. 84, no. 7, pp. 484-89.Google Scholar
  12. 12.
    Y.H. Jang, Y.T. Kim, and K.W. Yi: J. Kor. Inst. Met. Mater., 2010, vol. 48, no. 5, pp. 424-29.CrossRefGoogle Scholar
  13. 13.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, no. 2, pp. 295-311.CrossRefGoogle Scholar
  14. 14.
    FactSage:, 2010.
  15. 15.
    J. Lehmann, N. Botems, M. Simonnet, P. Gardin, and L. Zhang: Proc. Int. Conf. on Advances in Theory of Ironmaking and Steelmaking, Indian Institute of Science, Bangalore, India, 2009, pp. 232-39.Google Scholar
  16. 16.
    A.D. Pelton and M. Blander: Proc. 2nd Int. Symp. on Metallurgical Slags and Fluxes, TMS AIME, Lake Tahoe, NV, 1984, pp. 281-94.Google Scholar
  17. 17.
    A.D. Pelton and M. Blander: Metall. Trans. B, 1986, vol. 17B, pp. 805-15.CrossRefGoogle Scholar
  18. 18.
    A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.CrossRefGoogle Scholar
  19. 19.
    I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.CrossRefGoogle Scholar
  20. 20.
    R. Ding, B. Blanpain, P.T. Jones, and P. Wollants: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 197-206.CrossRefGoogle Scholar
  21. 21.
    Y.-S. Hsieh, Y. Watanabe, S. Asai, and I. Muchi: Tetsu-To-Hagané, 1983, vol. 69, no. 6, pp. 596-603.Google Scholar
  22. 22.
    D. Thompson and B.B. Argent: T. I. Min. Metall. C, 2007, vol. 116, no. 2, pp. 115-22.Google Scholar
  23. 23.
    R. Pajarre, P. Koukkari, and K. Penttilä: Comput. Chem. Eng., 2008, vol. 25, pp. 889-94.CrossRefGoogle Scholar
  24. 24.
    K. Penttilä and M. Yokota: VTT Research Notes - Advanced Gibbs Energy Methods for Functional Materials and Processes, Ed. P. Koukkari, VTT Technical Research Centre, Helsinki, Finland, 2009, pp. 103-23.Google Scholar
  25. 25.
    METSIM Process Simulator:, 2010.
  26. 26.
    D.G.C. Robertson: Proc. EPD Congress 1995, Symp. TMS Annual Meeting, The Minerals, Metals and Materials Society, Las Vegas, NV, 1995, pp. 347–61.Google Scholar
  27. 27.
    J. Peter, K.D. Peaslee, D.G.C. Robertson, and B.G. Thomas: Proc. AISTech 2005 - Iron & Steel Technology Conf., AIST, Charlotte, NC, 2005,pp. 959-73.Google Scholar
  28. 28.
    S.N. Lekakh, D.G.C. Robertson, C.H. Rawlins, V.L. Richards, and K.D. Peaslee: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 484-92.CrossRefGoogle Scholar
  29. 29.
    S. Kitamura, K. Miyamoto, and R. Tsujino: Tetsu-To-Hagané, 1994, vol. 80, no. 2, pp. 101-06.Google Scholar
  30. 30.
    S. Kitamura, M. Yano, K. Harashima, and N. Tsutumi: Tetsu-To-Hagané, 1994, vol. 80, no. 3, pp. 213-18.Google Scholar
  31. 31.
    T. Kitamura, K. Miyamoto, R. Tsujino, S. Mizoguchi, and K. Kato: ISIJ Int., 1996, vol. 36, no. 4, pp. 395-401.CrossRefGoogle Scholar
  32. 32.
    H. Saint-Raymond, D. Huin, and F. Stouvenot: Mater. Trans. JIM, 2000, vol. 41, no. 1, pp. 17-21.Google Scholar
  33. 33.
    N. Maruoka, F. Lazuardi, H. Nogami, G.S. Gupta, and S. Kitamura: ISIJ Int., 2010, vol. 50, no. 1, pp. 89-94.CrossRefGoogle Scholar
  34. 34.
    S. Kitamura, H. Aoki, K. Miyamoto, H. Furuta, K. Yamashita, and K. Yonezawa: ISIJ Int., 2000, vol. 40, no. 5, pp. 455-59.CrossRefGoogle Scholar
  35. 35.
    J.E. Lee: Report CFD Simulation for RH Process of Gwangyang Steelworks, Research Institute of Industrial Science and Technology, Pohang, Korea, 2010.Google Scholar
  36. 36.
    I.H. Jung: ISIJ Int., 2009, vol. 49, no. 8, pp. 1272-75.CrossRefGoogle Scholar
  37. 37.
    C.H. Keum, S.M. Seo, and J.H. Choi: Report Improvement of RH Refining Capacity of Ultra Low Carbon Steel, POSCO Research, Pohang, Korea, 2007.Google Scholar

Copyright information


Authors and Affiliations

  • Marie-Aline van Ende
    • 1
  • Young-Min Kim
    • 1
  • Mun-Kyu Cho
    • 2
  • Juhan Choi
    • 3
  • In-Ho Jung
    • 1
    Email author
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Research Institute of Industrial Science and TechnologyGyeongbukRepublic of Korea
  3. 3.Steelmaking Research Group, Technical Research Laboratories, POSCOGyeongbukRepublic of Korea

Personalised recommendations