Metallurgical and Materials Transactions B

, Volume 42, Issue 2, pp 300–315 | Cite as

Effect of Stopper-Rod Misalignment on Fluid Flow in Continuous Casting of Steel

  • R. Chaudhary
  • Go-Gi Lee
  • B. G. ThomasEmail author
  • Seong-Mook Cho
  • Seon-Hyo Kim
  • Oh-Duck Kwon


Misalignment of metal-delivery systems can cause asymmetric fluid flow in the mold region of continuous casters, leading to abnormal surface turbulence, insufficient superheat transport to the meniscus, slag entrainment, inclusion entrapment, and other quality problems. This work investigates the effect of stopper-rod misalignment on nozzle and mold flow velocities in a conventional continuous casting process using both a water model and a computational model. Three stopper-rod configurations are studied (aligned, front misaligned by 2 mm, and left misaligned by 2 mm). The 3-D steady k–ε finite-volume model matched well with impeller probe measurements of both velocity and its fluctuations. Negligible asymmetry was found near the narrow faces. Asymmetry close to submerged entry nozzle is the main cause of vortex formation observed in all cases. The left-misaligned stopper-rod produces a shallower jet with a higher flow rate from the right port, leading to higher surface velocities on the right surface. This produced substantially more large vortices on the left side. The asymmetry produced by the nozzle length bore diameter ratio of ~21 in this work is consistent with the theoretical critical entrance length of ~24 for turbulent pipe flow.


Turbulent Kinetic Energy Surface Velocity Casting Speed Vortex Formation Submerged Entry Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank POSCO and Shin-Eon Kang, POSCO Technical Research Laboratories for providing the water model, H.N. Bae for helping with the water model experiments, and ANSYS Inc. for supplying FLUENT. Support from the Continuous Casting Consortium, University of Illinois at Urbana-Champaign, POSCO, South Korea (Grant No. 4.0002397.01), and the National Science Foundation (Grant No. DMI 05-00453) is gratefully acknowledged.


  1. 1.
    World Steel in Figures, International Iron and Steel Institute, Brussels, Belgium, 2007.
  2. 2.
    B.G. Thomas: in Making, Shaping and Treating of Steel, A.W. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003.Google Scholar
  3. 3.
    J. Kubota, K. Okimoto, A. Shirayama, and H. Murakami: Steelmaking Conf. Proceedings, 1991.Google Scholar
  4. 4.
    S. Feldbauer and A. Cramb: PTD Conf. Proc., 13, Iron and Steel Society, Warrendale, PA, 1995, pp. 327-40.Google Scholar
  5. 5.
    J. Herbertson, Q.L. He, P.J. Flint, and R.B. Mahapatra: Steelmaking Conf. Proc. 1991, Iron and Steel Society, Warrendale, PA, pp. 171–85.Google Scholar
  6. 6.
    T. Honeyands and J. Herbertson: Steel Res. Int., 1995, vol. 66, pp. 287-93.Google Scholar
  7. 7.
    W.H. Emling, T.A. Waugaman, and S.L. Feldbauer: 77th Steelmaking Conference Proc., Iron and Steel Society, Warrendale, PA, 1994.Google Scholar
  8. 8.
    Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B., 2004, vol. 35B, pp. 685-702.CrossRefGoogle Scholar
  9. 9.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253-67.CrossRefGoogle Scholar
  10. 10.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269-84.CrossRefGoogle Scholar
  11. 11.
    G.-G. Li, H.-J. Shin, B.G. Thomas, and S.-H. Kim: AISTech Iron and Steel Technology Conf. 2008, Pittsburgh, PA, 2008.Google Scholar
  12. 12.
    S. Mahmood: MS Thesis, University of Illinois at Urbana-Champaign, 2006.Google Scholar
  13. 13.
    L. Zhang, Y. Wang, and X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-50.CrossRefGoogle Scholar
  14. 14.
    S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa, and S. Hara: ISIJ Int., 2001, vol. 41, pp. 1215-20.CrossRefGoogle Scholar
  15. 15.
    D. Gupta, S. Chakraborty, and A.K. Lahiri: ISIJ Int., 1997, vol. 37, pp. 654-58.CrossRefGoogle Scholar
  16. 16.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757-64.CrossRefGoogle Scholar
  17. 17.
    B.K. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1053-66.CrossRefGoogle Scholar
  18. 18.
    B. Li and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 30-36.CrossRefGoogle Scholar
  19. 19.
    Q. Yuan, B. Zhao, S.P. Vanka, and B.G. Thomas: Steel Res. Int., 2005, vol. 76, pp. 33-43.Google Scholar
  20. 20.
    H.K. Versteeg and W. Malalasekra: An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach, Longman Scientific Technical, Essex, England, 1995.Google Scholar
  21. 21.
    S.-M. Cho, G.-G. Lee, S.-H. Kim, R. Chaudhary, O.-D. Kwon, and B.G. Thomas: 2010 TMS Annual Meeting & Exhibition, Seattle, WA, 2010.Google Scholar
  22. 22.
    B.E. Launder and D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, U.K., 1972.Google Scholar
  23. 23.
    ANSYS Inc., FLUENT6.3-Manual, 2007, ANSYS Inc., Lebanon, NH.Google Scholar
  24. 24.
    D.E. Hershey, B.G. Thomas, and F.M. Najjar: Int. J. Num. Meth. Fluids, 1993, vol. 17, pp. 23-47.CrossRefGoogle Scholar
  25. 25.
    X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37, pp. 197-212.CrossRefGoogle Scholar
  26. 26.
    G.A. Panaras, A. Theodorakakos, and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117-26.CrossRefGoogle Scholar
  27. 27.
    B.E. Launder and D.B. Spalding: Comput. Meth. Appl. Mech. Eng., 1974, vol. 3, pp. 269-89.CrossRefGoogle Scholar
  28. 28.
    R. Chaudhary, G.-G. Lee, B.G. Thomas, and S.-H. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870-84.CrossRefGoogle Scholar
  29. 29.
    R. Chaudhary, B.G. Thomas, and S.P. Vanka: “Department of Mechanical Science and Engineering”, CCC Report 201011, University of Illinois at Urbana-Champaign, IL, 2010.Google Scholar
  30. 30.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253-67.CrossRefGoogle Scholar
  31. 31.
    F.M. White: Fluid Mechanics, 4th ed., Mc-Graw Hill, New York, NY, 1999.Google Scholar
  32. 32.
    R. Chaudhary, B.T. Rietow, and B.G. Thomas: Materials Science and Technology Conf., AIST/TMS, Pittsburgh, PA, 2009.Google Scholar

Copyright information


Authors and Affiliations

  • R. Chaudhary
    • 1
  • Go-Gi Lee
    • 2
  • B. G. Thomas
    • 1
    Email author
  • Seong-Mook Cho
    • 3
  • Seon-Hyo Kim
    • 3
  • Oh-Duck Kwon
    • 4
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Non-Ferrous Refining Project Team, Research Institute of Industrial Science and TechnologyPohangSouth Korea
  3. 3.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangSouth Korea
  4. 4.Magnesium Business DepartmentPOSCOSuncheonSouth Korea

Personalised recommendations