Metallurgical and Materials Transactions B

, Volume 42, Issue 1, pp 5–8

Theoretical Calculations of the Surface Tension of Liquid Transition Metals

Communication

Abstract

The surface tension of pure liquid mercury in the temperature range 273 K to 523 K (0 °C to 250 C°) was calculated using our previously reported equation. The results were compared with the experimental data and showed a good agreement. The surface tension of mercury decreases linearly with temperature, confirming a negative slope, and therefore shows the usual linear temperature dependence. The calculated surface excess entropy (0.21) is in excellent consistence with the experimental value (0.22). The surface tension also was calculated for many d-block metals (Ti, Zr, Fe, Co, Ni, Cu, Zn, Cd, Ag, Au, Pd, and Pt) at their melting points. The calculated values were compared with the existing experimental data.

References

  1. 1.
    B. Widom: J. Chem. Phys., 1978, vol. 68, pp. 3878–83.CrossRefGoogle Scholar
  2. 2.
    J.W. Cahn: J. Chem. Phys., 1977, vol. 66, pp. 3667–72.CrossRefGoogle Scholar
  3. 3.
    D. Chatain and P. Wynblatt: Surf. Sci., 1996, vol. 345, pp. 85–90.CrossRefGoogle Scholar
  4. 4.
    I. Egry, E. Ricci, R. Novakovic, and S. Ozama: Adv. Colloid Interface Sci., 2010, vol. 159, pp. 198–212.CrossRefGoogle Scholar
  5. 5.
    J.C. Earnshaw and C.J. Hughes: Phys. Rev. A, 1992, vol. 46, pp. 4494–96.CrossRefGoogle Scholar
  6. 6.
    C.J. Hughes and J.C. Earnshaw: Phys. Rev., 1993, vol. 47, pp. 3485–96.Google Scholar
  7. 7.
    H.L. Skriver and N.M. Rosengaard: Phys. Rev. B, 1992, vol. 46, pp. 7157–68.CrossRefGoogle Scholar
  8. 8.
    A. Ayyad and F. Aqra: Theor. Chem. Accounts, 2010, vol. 127, pp. 443–48.CrossRefGoogle Scholar
  9. 9.
    T.S. Ree, T. Ree, and H. Eyring: J. Chem. Phys., 1964, vol. 41, pp. 524–30.CrossRefGoogle Scholar
  10. 10.
    W.C. Lu, M.S. Jhon, T. Ree, and H. Eyring: J. Chem. Phys., 1967, vol. 46, pp. 1075–81.CrossRefGoogle Scholar
  11. 11.
    H. Eyring and M.S. Jhon: Significant Liquid Structure, John Wiley & Sons, New York, NY, 1969.Google Scholar
  12. 12.
    J.E. Schoutens: J. Mater. Sci., 1989, vol. 24, pp. 2681–86.CrossRefGoogle Scholar
  13. 13.
    S. Halas and T. Durakiewicz: J. Phys: Condens. Matter, 2002, vol. 14, pp. L735–L737.CrossRefGoogle Scholar
  14. 14.
    H. Bettin and H. Fehlauer: Metrologia, 2004, vol. 41, pp. S16–S23.CrossRefGoogle Scholar
  15. 15.
    M. Kernaghan: Phys. Rev., 1931, vol. 37, p. 1674.CrossRefGoogle Scholar
  16. 16.
    G.M. Ziesing: Aust. J. Phys., 1953, vol. 6, pp. 86–95.Google Scholar
  17. 17.
    C. Kemball: Trans. Faraday Soc., 1946, vol. 42, pp. 526–37.CrossRefGoogle Scholar
  18. 18.
    W. Bonfield: J. Mater. Sci., 1972, vol. 7, pp. 148–52.CrossRefGoogle Scholar
  19. 19.
    S.G. Cook: Phys. Rev., 1929, vol. 34, pp. 513–20.CrossRefGoogle Scholar
  20. 20.
    T.R. Hogness: J. Am. Chem. Soc., 1921, vol. 43, pp. 1621–28.CrossRefGoogle Scholar
  21. 21.
    F.E. Bartell, L.O. Case, and H. Brown: J. Am. Chem. Soc., 1933, vol. 55, pp. 2769–76.CrossRefGoogle Scholar
  22. 22.
    M.C. Wilkinson: Chem. Rev., 1972, vol. 72, pp. 575–625.CrossRefGoogle Scholar
  23. 23.
    P.F. Paradis, T. Ishikawa, and S. Yoda: Int. J. Thermophys., 2002, vol. 23, pp. 825–42.CrossRefGoogle Scholar
  24. 24.
    A.W. Peterson, H. Kedesdy, P.H. Keck, and E. Schwarz: J. Appl. Phys., 2009, vol. 29, pp. 213–16.CrossRefGoogle Scholar
  25. 25.
    K. Nogi, K. Ogino, A. Mclean, and W.A. Miller: Metall. Trans. B, 1986, vol. 17B, pp. 163–70.CrossRefGoogle Scholar
  26. 26.
    G.V. Samsonov and A.N. Krasnov: Mater. Sci., 1966, vol. 2, pp. 348–49.CrossRefGoogle Scholar
  27. 27.
    B.J. Keene: Int. Mater. Rev., 1988, vol. 33, pp. 1–37.Google Scholar
  28. 28.
    W.J. Yao, X.J. Han, M. Chen, B. Wei, and Z.Y. Guo: J. Phys. Condens. Matter, 2002, vol. 14, pp. 7479–86.CrossRefGoogle Scholar
  29. 29.
    M.E. Fraser, W.K. Lu, A.E. Hamielec, and R. Murarka: Metall. Trans., 1971, vol. 2, pp. 817–23.CrossRefGoogle Scholar
  30. 30.
    B. Gallois and C. H. P. Lupis: Metall. Trans. B, 1981, vol. 12B, pp. 549–57.CrossRefGoogle Scholar
  31. 31.
    T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, and K. Nogi: Meas. Sci. Technol., 2005, vol. 16, pp. 432–37.CrossRefGoogle Scholar
  32. 32.
    D.W.G. White: Metall. Trans., 1972, vol. 3, pp. 1933–36.CrossRefGoogle Scholar
  33. 33.
    S.F. Chernov, Y.V. Fedorov, and V.N. Zakharov: J. Phys. Chem. Solids, 1993, vol. 54, pp. 963-66.CrossRefGoogle Scholar
  34. 34.
    C. Solliard and M. Flueli: Surf. Sci., 1985, vol. 156, pp. 487–94.CrossRefGoogle Scholar
  35. 35.
    I. Egry, G. Lohoefer, and G. Jacobs: Phys. Rev. Lett., 1995, vol. 75, pp. 4043–46.CrossRefGoogle Scholar
  36. 36.
    N. Eustathopoulos, B. Drevet, and E. Ricci: J. Cryst. Growth, 1998, vol. 191, pp. 268–74.CrossRefGoogle Scholar
  37. 37.
    B.J. Keene: Int. Mater. Rev., 1993, vol. 38, pp. 157–92.Google Scholar
  38. 38.
    T. Lida and R. Guthrie: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 967–78.Google Scholar
  39. 39.
    T. Lida and R. Guthrie: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 437–47.Google Scholar
  40. 40.
    H.M. Lu and Q. Jiang: J. Phys. Chem. B, 2005, vol. 109, pp. 15463–68.CrossRefGoogle Scholar
  41. 41.
    R. Evans: J. Phys. C Solid State Phys., 1974, vol. 7, pp. 2808–30.CrossRefGoogle Scholar
  42. 42.
    G. Kaptay: Mater. Sci. Eng. A, 2008, vol. 495, pp. 19-26.CrossRefGoogle Scholar
  43. 43.
    M. Hasegawa, M. Watabe, and W.H. Young: J. Phys. F Metal Phys., 1981, vol. 11, pp. L173-L177.CrossRefGoogle Scholar
  44. 44.
    I. Egry, G. Lohoefer, and S. Sauerland: J. Non-cryst. Solids, 1993, vol. 156, pp. 830–32.CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2010

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Science and Technology, Hebron UniversityHebronPalestine

Personalised recommendations