Advertisement

Metallurgical and Materials Transactions B

, Volume 41, Issue 5, pp 1129–1138 | Cite as

Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined with Electron Beam Welding

  • Chuan LiuEmail author
  • Bing Wu
  • Jian Xun Zhang
Article

Abstract

A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

Keywords

Welding Residual Stress Heat Source Fusion Zone Residual Stress Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 50875200 and the China Doctoral Education Base Foundation under Grant No. 20070698088.

References

  1. 1.
    H.J. Stone, S.M. Roberts, and R.C. Reed: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2261–73.CrossRefGoogle Scholar
  2. 2.
    H.J. Stone, P.J. Withers, T.M. Holden, S.M. Roberts, and R.C. Reed: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1797–1808.CrossRefGoogle Scholar
  3. 3.
    C.C. Huang, Y.C. Pan, and T.H. Chuang: J. Mater. Eng. Perform., 1997, vol. 6, pp. 61–68.CrossRefGoogle Scholar
  4. 4.
    D.J. Smith, P.J. Bouchard, and D. George: J. Strain Anal. Eng., 2000, vol. 35, pp. 287–305.CrossRefGoogle Scholar
  5. 5.
    T. Ueda, Y.C. Kim, and A. Umekuni: Trans. JWRI, 1986, vol. 15, pp. 125–31.Google Scholar
  6. 6.
    D. George, and D.J. Smith: Int. J. Pres. Ves. Pip., 2005, vol. 82, pp. 279–87.CrossRefGoogle Scholar
  7. 7.
    J.H. Cowles, M. Blanford, A.F. Giamei, and M.J. Bruskotter: Proc. 7th Int. Conf. on Modeling of Casting, Welding and Advanced Solidification Processes, Minerals Metals & Materials Society, London, UK, 1995, pp. 347–54.Google Scholar
  8. 8.
    C.-J. Rosen, A. Gumenyuk, H. Zhao, and U. Dilthey: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 614–19.CrossRefGoogle Scholar
  9. 9.
    A. Lundbäck, and H. Runnemalm: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 717–24.CrossRefGoogle Scholar
  10. 10.
    J.R. Cho, K.T. Conlon, and R.C. Reed: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2935–46.CrossRefGoogle Scholar
  11. 11.
    H.J. Stone, S.M. Roberts, and R.C. Reed: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2261–73.CrossRefGoogle Scholar
  12. 12.
    Y. Tian, C. Wang, D. Zhu, and Y. Zhou: J. Mater. Process. Technol., 2008, vol. 199, pp. 41–48.CrossRefGoogle Scholar
  13. 13.
    S. Sarkani, V. Tritchkov, and G. Michaelov: Finite Elem. Anal. Des., 2000, vol. 35, pp. 247–68.zbMATHCrossRefGoogle Scholar
  14. 14.
    W. Jiang, K. Yahiaoui, F.R. Hall, and T. Laoui: J. Strain Anal. Eng., 2005, vol. 40, pp. 587–97.CrossRefGoogle Scholar
  15. 15.
    P. Dong, J.K. Hong, and P.J. Bouchard: Int. J. Pres. Ves. Pip., 2005, vol. 82, pp. 258–69.CrossRefGoogle Scholar
  16. 16.
    J. Zhang, P. Dong, F.W. Brust, W.J. Shack, M.E. Mayfield, and M. McNeil: Nucl. Eng. Des., 2000, vol. 195, pp. 171–87.CrossRefGoogle Scholar
  17. 17.
    J.X. Zhang, Y. Xue, and S.L. Gong: Sci. Technol. Weld. Join., 2005, vol. 10, pp. 643–46.CrossRefGoogle Scholar
  18. 18.
    Y. Arata, K. Terai, H. Nagai, S. Shimizu, and T. Aota: Trans. JWRI, 1978, vol. 7, pp. 41–48.Google Scholar
  19. 19.
    S.A. Tsirkas, P. Papanikos, and T. Kermanidis: J. Mater. Process. Technol., 2003, vol. 134, pp. 59–69.CrossRefGoogle Scholar
  20. 20.
    S.A. Tsirkas, P. Papanikos, K. Pericleous, N. Strusevich, F. Boitout, and J.M. Bergheau: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 79–88.CrossRefGoogle Scholar
  21. 21.
    C. Carmignania, R. Maresb, and G. Toselli: Comput. Methods Appl. Mech. Eng., 1999, vol. 179, pp. 197–214.CrossRefGoogle Scholar
  22. 22.
    K.N. Lankalapalli: J. Phys. D: Appl. Phys., 1996, vol. 29, pp. 1831–71.CrossRefADSGoogle Scholar
  23. 23.
    Z. Cai, and H. Zhao: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 195–204.CrossRefGoogle Scholar
  24. 24.
    P. Michaleris, and A. Debiccari: Weld. J., 1997, vol. 76, pp. 173–81.Google Scholar
  25. 25.
    J. Goldak, A. Chakravarti, and M. Bibby: Metall. Trans. B, 1984, vol.15B, pp. 299–305.CrossRefADSGoogle Scholar
  26. 26.
    B. Brickstad, and B.L. Josefson: Int. J. Pres. Ves. Pip., 1998, vol. 75, pp. 11–25.CrossRefGoogle Scholar
  27. 27.
    China Materials Engineering Canon Editorial Committee: China Materials Engineering Canon, Chemical Industry Press, Beijing, China, 2006.Google Scholar
  28. 28.
    Y. Ueda, and K. Nakacho: Trans. JWRI, 1982, vol. 11, pp. 95–103.Google Scholar
  29. 29.
    Y. Shim, Z. Feng, S. Lee, J. Jaeger, J.C. Papritan, and C.L. Tsai: Weld. J., 1992, vol. 71, pp. 305s-12s.Google Scholar
  30. 30.
    D.J. Smith, P.J. Bouchard, and D. George: J. Strain Anal. Eng., 2000, vol. 35, pp. 287–305.CrossRefGoogle Scholar
  31. 31.
    R.H. Leggatt: Int. J. Pres. Ves. Pip., 2008, vol. 85, pp. 144–51.CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2010

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.National Key Laboratory of High Energy Density Beam Processing TechnologyBeijing Aeronautical Manufacturing Technology Research InstituteBeijingP.R. China

Personalised recommendations