Metallurgical and Materials Transactions B

, Volume 41, Issue 5, pp 925–934 | Cite as

The Preston of the Guinier-Preston Zones. Guinier

Article

Abstract

Almost all materials scientists know about the Guinier–Preston (GP) zones, which were discovered in age-hardened aluminum-copper alloys in 1938. One of the discoverers, the French André Guinier, is rightly well known. The other discoverer, the British G.D. Preston, is totally ignored, even in English scientific biographies. I wish here to partly make up for this “oblivion” by giving elements about George Preston’s life (August 8, 1896 to June 22, 1972) and scientific work. Born in Ireland to the physicist Thomas Preston and deceased in Scotland, G. Preston carried out his scientific achievements in England, mainly studying the crystallographic structure of metals, metallic alloys, and thin films of metal oxides in a pioneering way. He also discussed the atomistic structure of twins in 1927. He mastered many kinds of X-ray and electron diffraction techniques up to diffuse scattering, which allowed him to detect the GP zones. Although he was involved in several controversies, including one about diamonds, he always remained a forthright person until his final professorship in Dundee. André Guinier’s career is briefly recalled in a parallel way.

Notes

Acknowledgments

I thank Professor Sandy Fitzgerald, who retired recently from the Harris Chair of Physics at Dundee; Stephen Forge, Archivist of Oundle School where Preston studied as a young boy; and Ms. Sylvia Chantler from the NPL Library and Information Services. An obituary was published in The Times, on June 29, 1972. I also wish to thank the library departments of the École Polytechnique and of the CEA Saclay. Last, but not least, I also wish to thank Professor David Brandon for quite a few scientific and historical discussions.

References

  1. 1.
    O.B.M. Hardouin Duparc: “Le Preston des zones de Guinier-Preston,” Cahiers d’Histoire l’Aluminium, 2001, vol. 29, pp. 56–62.Google Scholar
  2. 2.
    T. Preston: “Radiative Phenomena in a Strong Magnetic Field,” Scientific Transactions of the Royal Dublin Society, 1898, vol. 6, pp. 385–91; Phil. Mag., 1898, vol. 45, pp. 335–39.Google Scholar
  3. 3.
    T. Preston: “General Law of the Phenomena of Magnetic Perturbations of Spectral Lines,” Nature, 1899, vol. 59, p. 248.CrossRefADSGoogle Scholar
  4. 4.
    T. Preston: Theory of Light, 4th ed., W.E. Thrift, ed., 1890, 1895, 1901, 1912. http://www.archive.org/stream/theoryoflight00presrich#page/n5/mode/2up.
  5. 5.
    T. Preston: Theory of Heat, 2nd ed., revised by J.R. Cotter, 1895, 1904, http://www.archive.org/stream/theoryofheat00presrich#page/n3/mode/2up.
  6. 6.
    W.L. Bragg: “The Crystalline Structure of Copper,” Phil. Mag., 1914, vol. 28, pp. 355–60.Google Scholar
  7. 7.
    A.W. Hull: “Autobiography,” in Fifty Years of X-Ray Diffraction, Ed. P.P. Ewald, International Union of Crystallography, Utrecht, The Netherlands, 1962, pp. 582–87.Google Scholar
  8. 8.
    O.B.M. Hardouin Duparc: “Copper and Venus: How Copper Atoms Interact,” in Copper, Ed., J.M. Welter, Wiley-VCH, Weinheim, Germany, 2006, pp. 18–24.CrossRefGoogle Scholar
  9. 9.
    W.H. Bragg: “Application of the Ionisation Spectrometer to the Determination of the Structure of Minute Crystals,” Proc. Phys. Soc. London, 1921, vol. 33, pp. 222–24.CrossRefGoogle Scholar
  10. 10.
    E.A. Owen and G.D. Preston: “Modification of the Powder Method of Determining the Structure of Metal Crystals,” Proc. Phys. Soc. London, 1922, vol. 35, pp. 101–08.Google Scholar
  11. 11.
    E.A. Owen and G.D. Preston: “X-Ray Analysis of Solid Solutions,” Proc. Phys. Soc. London, 1923, vol. 36, pp. 14–30.CrossRefGoogle Scholar
  12. 12.
    E.A. Owen and G.D. Preston: “X-Ray Analysis of Zinc-Copper Alloys,” Proc. Phys. Soc. London, 1923, vol. 36, pp. 49–66.CrossRefGoogle Scholar
  13. 13.
    E.A. Owen and G.D. Preston: “The Atomic Structure of Two Intermetallic Compounds,” Proc. Phys. Soc. London, 1924, vol. 36, pp. 341–48.CrossRefGoogle Scholar
  14. 14.
    E.A. Owen and G.D. Preston: “The Atomic Structure of AgMg and AuZn,” Phil. Mag., 1926, vol. 2, pp. 1266–70.Google Scholar
  15. 15.
    G.D. Preston and E.A. Owen: “The Atomic Structure of AuSn,” Phil. Mag., 1927, vol. 4, pp. 133–47.Google Scholar
  16. 16.
    E.A. Bain: “Studies of Crystal Structure with X-Rays,” Chem. Metall. Eng., 1921, vol. 25, pp. 657–64.Google Scholar
  17. 17.
    E.A. Bain: “What the X-Ray Tells Us About the Structure of Solid Solutions,” Chem. Metall. Eng., 1921 vol. 25, p. 729.Google Scholar
  18. 18.
    E.A. Bain: “The Nature of Solid Solutions,” Chem. Metall. Eng., 1923, vol. 28 pp. 21–24 (+ correction p. 576).Google Scholar
  19. 19.
    W. Rosenhain: “The Hardness of Solid Solutions,” Proc. Roy. Soc. A, 1921, vol. 99, pp. 196–202.CrossRefADSGoogle Scholar
  20. 20.
    L. Pauling: “The Crystal Structure of Magnesium Stannide,” J. Amer. Chem. Soc., 1923, vol. 45, pp. 2777–80.CrossRefGoogle Scholar
  21. 21.
    G. Phragmén: “Om Järn-Kisellegeringarnas Byggnad,” Jernkontorets Annalen, 1923, vol. 107, pp. 121–31.Google Scholar
  22. 22.
    A. Westgren and G. Phragmén: “X-Ray Analysis of the Cu-Zn, Ag-Zn and Au-Zn Alloys,” Phil. Mag., 1925, vol. 50, pp 311–41.Google Scholar
  23. 23.
    A. Westgren and G. Phragmén: “Zur Chemie der metallischen Système,” Z. Metallkunde, 1926, vol. 18, pp. 279–84.Google Scholar
  24. 24.
    G.D. Preston: “An X-Ray Investigation of Some Copper-Aluminium Alloys,” Phil. Mag., 1931, vol. 12, pp. 980–93.Google Scholar
  25. 25.
    G.D. Preston: “An X-Ray Examination of Iron-Chromium Alloys,” Phil. Mag., 1932, vol. 13, pp. 419–25.Google Scholar
  26. 26.
    G.D. Preston: “Crystal Structure of α-Manganese,” Phil. Mag., 1928, vol. 5, pp. 1198–1206.Google Scholar
  27. 27.
    G.D. Preston: “Crystal Structure of β-Manganese,” Phil. Mag., 1928, vol. 5, pp. 1207–25.Google Scholar
  28. 28.
    G.D. Preston: “The Structure of Oxide Films on Nickel,” Phil. Mag., 1934, vol. 17, pp. 466–70.Google Scholar
  29. 29.
    G.D. Preston and L.L. Bircumshaw: “Studies in the Oxidation of Metals.—Part I,” Phil. Mag., 1935, vol. 19, pp. 160–76.Google Scholar
  30. 30.
    G.D. Preston and L.L. Bircumshaw: “Studies in the Oxidation of Metals.—Part II. Copper, Brass, Aluminium-Brass, Aluminium-Bronze, Magnesium, and Some Magnesium Alloys,” Phil. Mag., 1935, vol. 20, pp. 706–20.Google Scholar
  31. 31.
    G.D. Preston and L.L. Bircumshaw: “Studies in the Oxidation of Metals.—Part III. The Kinetics of the Oxidation of Molten Tin,” Phil. Mag., 1936, vol. 21, pp. 686–97.Google Scholar
  32. 32.
    G.D. Preston and L.L. Bircumshaw: “Studies in the Oxidation of Metals.—Part IV. The Oxide Film on Aluminium,” Phil. Mag., 1936, vol. 22, pp. 654–65.Google Scholar
  33. 33.
    G.D. Preston and L.L. Bircumshaw: “Studies in the Oxidation of Metals.—Part V. The Oxidation of Molten Lead,” Phil. Mag., 1938, vol. 25, pp. 769–82.Google Scholar
  34. 34.
    G.D. Preston: “The Formation of Twin Metallic Crystals,” Nature, 1927, vol. 119, pp. 600–01.CrossRefADSGoogle Scholar
  35. 35.
    M. Mrovec, T. Ochs, C. Elsässer, V. Vitek, D. Nguyen-Manh, and D.G. Pettifor: “Never Ending Saga of a Simple Boundary,” Z. Metallkd., 2003, vol. 94, pp. 1–6.Google Scholar
  36. 36.
    G. Friedel: “Études sur les groupements cristallins,” Bulletin de la Société de l’Industrie Minérale, 1904, vol. 3, pp. 877–1097.Google Scholar
  37. 37.
    O.B.M. Hardouin Duparc: “Alfred Wilm and the Beginnings of Duralumin,” Int. J. Mat. Res. (Z. Metallkd.), 2005, vol. 96, pp. 398–404.Google Scholar
  38. 38.
    M.L.V. Gayler and G.D. Preston: “The Age-Hardening of Some Aluminium Alloys,” J. Inst. Met., 1929, vol. 41, pp. 191–247.Google Scholar
  39. 39.
    M.L.V. Gayler and G.D. Preston: “The Age-Hardening of Some Aluminium Alloys of High Purity,” J. Inst. Met., 1932, vol. 48, pp. 197–219.Google Scholar
  40. 40.
    C.H. Desch: The Chemistry of Solids, Cornell University Press, Ithaca, NY, 1934.Google Scholar
  41. 41.
    G.D. Preston: “The Diffraction of X-Rays by Age-Hardening Aluminium Copper Alloys,” Proc. R. Soc. A, 1938, vol. 167, pp. 526–38.CrossRefADSGoogle Scholar
  42. 42.
    G.D. Preston: “The Diffraction of X-Rays by an Age-Hardening Alloy of Aluminium and Copper. The Structure of an Intermediate Phase,” Phil. Mag., 1938, vol. 26, pp. 855–71.Google Scholar
  43. 43.
    G.D. Preston: “Structure of Age-Hardened Aluminium-Copper Alloys,” Nature, 1938, vol. 142, p. 570. (directly following Guinier’s article).CrossRefADSGoogle Scholar
  44. 44.
    A. Guinier: “Un nouveau type de diagrammes de rayons X,” Comptes Rendus Hebdomadaires Séances l’Académie Sciences, 1938, vol. 206, pp. 1641–43.Google Scholar
  45. 45.
    J. Calvet, P. Jacquet, and A. Guinier: “Sur le durcissement par vieillissement d’un alliage aluminium-cuivre,” Comptes Rendus Hebdomadaires Séances l’Académie Sciences, 1938, vol. 206, pp. 1972–74.Google Scholar
  46. 46.
    A. Guinier: “Structure of Age-Hardened Aluminium-Copper Alloys,” Nature, 1938, vol. 142, pp. 569–70.CrossRefADSGoogle Scholar
  47. 47.
    R.F. Mehl and L.K. Jetter: “The Mechanism of Precipitation from Solid Solution. The Theory of Age Hardening,” in Age Hardening of Metals, ASM Symposium, American Society for Metals, Cleveland, OH, 1940, pp. 342–438.Google Scholar
  48. 48.
    A. Guinier: “Heterogeneities in Solid Solutions,” in Summer School on the Solid State, Les Houches (1956) 70 pages (spec. p. 46). + “Heterogeneities in Solid Solutions,” in Solid State Physics, vol. 9, Academic Press, New York, NY, 1959, pp. 293–398 (spec. pp. 340–41).Google Scholar
  49. 49.
    S. Ravy: “From Guinier-Preston Zones to Friedel Oscillations.” J. Phys. IV, 2002, vol. 12, pp. 7–14.Google Scholar
  50. 50.
    M. Karlik and B. Jouffrey: “High Resolution Electron Microscopy Study of Guinier-Preston (GP1) Zones in Al-Cu based Alloys,” Acta Mater., 1997, vol. 45, pp. 3251–63.CrossRefGoogle Scholar
  51. 51.
    T.J. Konno, M. Kawasaki, and K. Hiraga: “Guinier-Preston Zones observed by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy,” Phil. Mag. B, 2001, vol. 81, pp. 1713–24.CrossRefADSGoogle Scholar
  52. 52.
    M. Karlik, A. Bigot, B. Jouffrey, P. Auger, and S. Belliot: “HREM, FIM and Tomographic Atom Probe Investigation of Guinier-Preston Zones in Al-1.654at.pct Cu Alloy,” Ultramicroscopy, 2004, vol. 98, pp. 219–30.CrossRefPubMedGoogle Scholar
  53. 53.
    C. Wolverton: “First-Principles Prediction of Equilibrium Precipitate Shapes in Al-Cu Alloys,” Phil. Mag. Let., 1999, vol. 79, pp. 683–90.CrossRefADSGoogle Scholar
  54. 54.
    S.Q. Wang, M. Schneider, H.Q. Ye, and G. Gottstein: “First-Principles Study of the Formation of Guinier-Preston Zones in Al-Cu Alloys,” Scripta Mater., 2004, vol. 51, pp. 665–69.CrossRefGoogle Scholar
  55. 55.
    W. Friedrich: “Eine neue Interferenzerscheinung bei Röntgenstrahlen,” Physikalische Zeitschrift, 1913, vol. 14, pp. 317–19.Google Scholar
  56. 56.
    W. Friedrich: “Röntgenstrahlunginterferenzen,” Physikalische Zeitschrift, 1913, vol. 14, pp. 1079–87.Google Scholar
  57. 57.
    P. Debye: “Interferenz von Röntgenstrahlen und Wärmebewegung,” Annalen der Physik, 1914, vol. 43, pp. 49–95. (P. Debije, Verhandlungen Deutschen Physikalischen Gesellschaft, 1913, vol. 15, pp. 678–x, 738–x, 857–x).Google Scholar
  58. 58.
    L. Brillouin: “Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique,” Annales Physique, 1922, vol. 9, pp. 88–122.Google Scholar
  59. 59.
    H. Faxén: “Die bei Interferenz von Röntgenstrahlen durch die Wärmebewegung entstehende zerstreute Strahlung,” Annalen Physik, 1918, vol. 54, pp. 615–20.Google Scholar
  60. 60.
    I. Waller: “Zur Frage der Einwirkung der Wärmebewegung aud die Interferenz von Röntgenstrahlen,” Zeitschrift Physik, 1923, vol. 17, pp. 398–408.CrossRefGoogle Scholar
  61. 61.
    J. Laval: “Sur la diffusion des rayons X par un cristal,” Comptes Rendus Hebdomadaires Séances l’Académie des Sciences, 1938, vol. 207, pp. 169–70.Google Scholar
  62. 62.
    R.W. James: The Optical Principles of the Diffraction of X-Rays, Bell & Sons, London, UK, 1954.Google Scholar
  63. 63.
    J. Laval: “Étude expérimentale de la diffusion des rayons X par les cristaux,” Bulletin Société Française Minéralogie, 1939, vol. 62, pp. 137–253.Google Scholar
  64. 64.
    G.D. Preston: “A Temperature Effect in Laue Photographs,” Nature, 1939, 143, p. 76.CrossRefADSGoogle Scholar
  65. 65.
    G.D. Preston: “Diffraction of X-Rays by Crystals at Elevated Temperatures,” Proc. Roy. Soc., London, A, 1939, vol. 172, pp. 116–26.CrossRefADSGoogle Scholar
  66. 66.
    M. Born: “Theoretical Investigations on the Relation between Crystal Dynamics and X-Ray Scattering,” Rep. Prog. Phys., 1943, vol. 9, pp. 294–333.CrossRefADSGoogle Scholar
  67. 67.
    K. Lonsdale: “X-Ray Study of Crystal Dynamics: An Historical and Critical Survey of Experiment and Theory,” Proc. Phys. Soc. London, vol. 54, London, UK, 1942, pp. 314–53.Google Scholar
  68. 68.
    R. Singh: “Sir C.V. Raman, Dame Kathleen Lonsdale and Their Scientific Controversy due to the Diffuse Spots in X-Ray Photographs,” Indian J. Hist. Sci., 2002, vol. 37, pp. 267–90.Google Scholar
  69. 69.
    G.D. Preston: “Anomalous Reflexions in X-Ray Patterns,” Proc. Roy. Soc. A, 1941, vol. 179, pp. 1–7.CrossRefADSGoogle Scholar
  70. 70.
    G.D. Preston: “Diffuse Reflexion of X-Rays,” Nature, 1941, vol. 147, pp. 467–71.CrossRefADSGoogle Scholar
  71. 71.
    G.D. Preston: “Quantum Theory and Diffuse X-Ray Reflexions,” Nature, 1942, vol. 149, pp. 373–74. (+ see comments in Nature, 1942, vol. 149, pp. 402–05).CrossRefADSGoogle Scholar
  72. 72.
    G. Venkataraman: A Journey into Light, the Life and Science of C.V. Raman, Indian Academy of Sciences, Bangalore, India, 1988.Google Scholar
  73. 73.
    L. Van Hove: “The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal,” Phys. Rev., 1953, vol. 89, pp. 1189–93.MATHCrossRefADSGoogle Scholar
  74. 74.
    G.D. Preston: “Structure of Diamond,” Nature, 1945, vol. 155, pp. 69–70.CrossRefADSGoogle Scholar
  75. 75.
    A. Guinier: “Diffusion anormale des rayons X par le diamant,” CRAS, 1942, vol. 215, pp. 114–15.Google Scholar
  76. 76.
    F.C. Frank: “On the X-Ray Diffraction Spikes of Diamond,” Proc. Roy. Soc. A, 1956, vol. 237, pp. 168–74. (with an error of a factor of 4 on the involved atomistic displacements, an error only noticed by himself eight (sic) years later in Proc. Phys. Soc., 1964, vol. 84, pp. 745–48).Google Scholar
  77. 77.
    L.C. Martin, R.V. Whelpton, and D.H. Parnum: “A New Electron Microscope,J. Sci. Instrum., 1937, vol. 14, pp. 14–24.CrossRefADSGoogle Scholar
  78. 78.
    R. Reed: “Some Recollections of Electron Microscopy in Britain from 1943 to 1948,” in The Beginnings of Electron Microscopy, Advances in Electronics and Electron Physics, Suppl. 16, P.W. Hawkes, ed., Academic Press, Orlando, FL, 1985, pp. 483–500.Google Scholar
  79. 79.
    G.D. Preston: “Microscopy with Light, Electrons and X-Rays,” J. Sci. Instrum., 1944, vol. 21, pp. 205–13.CrossRefADSGoogle Scholar
  80. 80.
    V.E. Cosslett: “Summarized Proceedings of Conference on the Electron Microscope Oxford 1946,” J. Sci. Instrum., 1947, vol. 24, pp. 113–19.CrossRefADSGoogle Scholar
  81. 81.
    R.D. Preston: “Early Days in Electron Microscopy,” Proc. Royal Microscopical Society, vol. 18, London, UK, 1983, pp. 37–40.Google Scholar
  82. 82.
    V.E. Cosslett: “Random Recollections of the Early Days,” in Advances in Electronics and Electron Physics, Suppl. 16 (The Beginnings of Electron Microscopy), P.W. Hawkes, ed., Academic Press, Orlando, FL, 1985, pp. 23–61.Google Scholar
  83. 83.
    R.W. Cahn: “A Great Crystallographer,” Mater. Today, 2002, vol. 5, p. 13. (and also in a Materials Musings section of the MRS titled “Curiouser and Curiouser”).Google Scholar
  84. 84.
    O.B.M. Hardouin Duparc: “Robert W. Cahn: 1924–2007,” Int. J. Mat. Res. (Z. Metallkd.), 2007, vol. 98, pp. 651–54.Google Scholar
  85. 85.
    S. Balibar: “Looking Back at Superfluid Helium,” Séminaire Poincaré, 2003, vol. 1, pp. 11–20.Google Scholar
  86. 86.
    R.W. Cahn: The Coming of Materials Science, Pergamon, New York, NY, 2001, p. 90.Google Scholar
  87. 87.
    J.-M. Dubois: Useful Quasicrystals, World Scientific, Singapore, 2005, p. 24.CrossRefGoogle Scholar
  88. 88.
    C. Mauguin: “Étude des micas (non fluorés) au moyen des rayons X,” Comptes Rendus hebdomadaires l’Académie Sciences, 1928, vol. 187, pp. 303–04.Google Scholar
  89. 89.
    A. Guinier: “Dispositif permettant d’obtenir des diagrammes de diffraction de poudres cristallines très intenses avec un rayonnement monochromatique,” CRAS, 1937, vol. 204, pp. 1115–16.Google Scholar
  90. 90.
    A. Guinier: “La diffusion des rayons X sous les très faibles angles appliquée à l’étude de fines particules et de suspensions colloïdales,” CRAS, 1938, vol. 206, pp. 1374–75.Google Scholar
  91. 91.
    J. Castaing, R. Castaing’s wife, personal communication.Google Scholar
  92. 92.
    A. Guinier: La Structure de la Matière. Du Ciel Bleu aux Cristaux Liquides, Hachette-CNRS, Paris, France, 1980; translated by W.J. Duffin: The Structure of Matter: From the Blue Sky to Liquid Crystals, Edward Arnold, London, UK, 1984.Google Scholar
  93. 93.
    A. Guinier and R. Jullien: La Matière à l’état Solide. Des Supraconducteurs aux Superalliages, Hachette-CNRS, Paris, France, 1987; translated by W.J. Duffin: Solid State: From Superconductors to Superalloys, Oxford University Press, Oxford, UK, 1989.Google Scholar
  94. 94.
    A. Guinier: Théorie et Technique de la Radiocristallographie, Dunod, Paris, France, 1956 and 1965 (susbstantially augmented versions of Radiocristallographie, Dunod, Paris, France 1945 but without Mauguin’s preface. Ch. Mauguin, who died in 1958, was too feeble to write an updated preface. The 1956 edition was translated by P. Lorrain and D. Lorrain: X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Freeman, San Francisco, CA, 1963. Radiocristallographie was translated by T.L. Tippett, and edited by K. Lonsdale with a foreword by K. Lonsdale: X-Ray Crystallography Technology, Hilger and Watts, London, UK, 1952.).Google Scholar
  95. 95.
    A. Guinier and G. Fournet: Small Angle Scattering of X-Rays, translated by C.B. Walker, Wiley, New York, NY, 1955.Google Scholar
  96. 96.
    M. Lambert: “André Guinier, un des «pères fondateurs» de notre Université,” Orsay-Infos, 2000, vol. 61, p. 14.Google Scholar
  97. 97.
    M. Lambert: “André Guinier,” Acta Crystallographica A, 2001, vol. 57, pp. 1–3.CrossRefGoogle Scholar
  98. 98.
    R. Comès: “André Guinier (1911–2000),” J. Physique, 2002, vol. 12, pp. 1–6.Google Scholar
  99. 99.
    B. Jouffrey: “Hommage à André Guinier, Membre de l’Institut,” Revue Métallurgie-CIT/SGM, 2002, vol. 2, pp. 95–96.Google Scholar
  100. 100.
    A. Guinier: “Personal Reminiscences,” in Fifty Years of X-Ray Diffraction, Ed. P.P. Ewald, International Union of Crystallography, Utrecht, The Netherlands, 1962, pp. 574–78.Google Scholar
  101. 101.
    A. Guinier: “On the Birth of GP Zones,” Mater. Sci. Forum, 1996, vols. 217–222, pp. 3–6.CrossRefGoogle Scholar
  102. 102.
    A. Guinier: “As Chance should have it…,” Rigaku J., 1999, vol. 16, p. 2.Google Scholar

Here are some additional publications by G.D. Preston, which I read but did not include in the main text

  1. 103.
    E.A. Owen and G.D. Preston: “The Effect of Rolling on the Crystal Structure of Aluminium,” Proc. Phys. Soc. London, vol. 38, London, UK, 1925, pp. 132–47.Google Scholar
  2. 104.
    E.A. Owen and G.D. Preston: “X-Ray Tube with Detachable Electrodes Suitable for Crystals,” J. Sci. Instrum., 1926, vol. 4, pp. 1–3.Google Scholar
  3. 105.
    G.D. Preston, with Marie L.V. Gayler: “Exhibits Relating to the Crystal Structure of Manganese and of Aluminium Alloys,” Proc. Phys. Soc., 1929, vol. 41, pp. 590–91.Google Scholar
  4. 106.
    G.D. Preston: “Age-Hardening of Copper-Aluminium Alloys,” Proc. Phys. Soc., 1940, vol. 52, pp. 77–79. (+ Discussions, pp. 94–101).Google Scholar
  5. 107.
    G.D. Preston: “Diffuse Reflexion of X-Rays,” Nature, 1941, vol. 147, pp. 358–59.Google Scholar
  6. 108.
    G.D. Preston: “Precipitation in the Solid State,” J. Sci. Instrum. (London), 1941, vol. 18, pp. 154–57.Google Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2010

Authors and Affiliations

  1. 1.Laboratoire des Solides IrradiésÉcole PolytechniquePalaiseau CedexFrance

Personalised recommendations