Advertisement

Quality Indices for Aluminum Alloy Castings: A Critical Review

  • Murat TiryakioğluEmail author
  • John Campbell
  • Nikolaos D. Alexopoulos
Article

Abstract

Several indices are available in the literature to assess the structural quality of cast Al alloys, especially Al-7 pct Si-Mg alloys that are based on tensile test results. Some of these indices, most notably the one developed by Drouzy et al., provide a number that necessarily does not have a physical meaning, whereas the others are a measure of what fraction of the expected tensile performance is achieved. These indices are analyzed in depth, their similarities and shortcomings are discussed in detail, and recommendations are made.

Keywords

Quality Index True Stress Structural Quality Artificial Aging Cast Aluminum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

empirical constant (MPa)

b

empirical constant (MPa)

c

empirical constant (MPa)

C

the strength coefficient in the Ludwik–Hollomon equation (MPa)

eF

elongation to fracture (pct)

eF(e)

elongation estimated for the defect-free structure

enu

nonuniform elongation

eu

uniform elongation

k

empirical constant (MPa)

k0

empirical constant (MJ.m−3)

K

unitless parameter in the Kocks-Mecking model

n

strain hardening exponent in the Ludwik–Hollomon equation

QAP

quality index developed by Alexopoulos and Pantelakis

QC

quality factor developed by Caceres

QDJR

quality index developed by Drouzy et al.

QDRC

quality index developed by Din et al.

QT

quality index based on the ductility potential concept

QTSC

quality index developed by Tiryakioğlu et al.

ST

tensile (fracture) strength (MPa)

β0

empirical constant

β1

empirical constant (MPa−1)

β2

empirical constant

β3

empirical constant (MPa−1)

εp

true plastic strain

ψ

plastic strain energy density (toughness) (MJ.m−3)

ψmax

maximum plastic strain energy density in the sample (MJ.m−3)

Θ

work hardening rate (MPa)

Θ0

the initial work hardening rate in the Kocks-Mecking model (MPa)

σ

true stress (MPa)

σS

saturation stress (MPa)

σY

yield strength (MPa)

σY(max)

maximum yield strength in the sample (MPa)

σ0

true stress at ε = 0

References

  1. 1.
    M. Tiryakioğlu, J. Campbell, and N.R. Green: AFS Trans., 1996, vol. 104, pp. 1069-78.Google Scholar
  2. 2.
    M. Tiryakioğlu, J. Campbell, and J.T. Staley: Scripta Mater., 2003, vol. 49, pp. 873-78.CrossRefGoogle Scholar
  3. 3.
    C. Nyahumwa, N.R. Green, and J. Campbell: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 349-58.CrossRefGoogle Scholar
  4. 4.
    J.T. Staley, Jr., M. Tiryakioğlu, and J. Campbell: Mater. Sci. Eng. A, 2007, vol. A465, pp. 136-45.Google Scholar
  5. 5.
    N.R. Green and J. Campbell: Mater. Sci. Eng. A, 1993, vol. A173, pp. 261-66.Google Scholar
  6. 6.
    X. Dai, X., Yang, J., Campbell, and J. Wood: Mater. Sci. Eng. A, 2003, vol. A354, pp. 315-25.Google Scholar
  7. 7.
    M. Drouzy, S. Jacob, and M. Richard: AFS Intl. Cast Metals. J., 1980, vol. 5, pp. 43-50.Google Scholar
  8. 8.
    N.D. Alexopoulos: J. Mater. Eng. Perform., 2006, vol. 15, pp. 59-66.CrossRefGoogle Scholar
  9. 9.
    J. Campbell: Castings, 2nd ed. Elsevier, Amsterdam, The Netherlands, 2003.Google Scholar
  10. 10.
    T. Din and J Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 644-50.Google Scholar
  11. 11.
    T. Din, A.K.M.B. Rashid, and J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 269-73.Google Scholar
  12. 12.
    N.D. Alexopoulos, and S.G. Pantelakis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 301-08.CrossRefGoogle Scholar
  13. 13.
    G. Dieter: Mechanical Metallurgy, McGraw Hill, New York, NY, 1988.Google Scholar
  14. 14.
    M. Tiryakioğlu, J.T. Staley, and J. Campbell: Mater. Sci. Eng. A, 2004, vol. A368, pp. 231-38.Google Scholar
  15. 15.
    N.D. Alexopoulos and S.G. Pantelakis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3079-89.CrossRefGoogle Scholar
  16. 16.
    C.H. Cáceres: Intl. J. Cast Metals Res., 1998, vol. 10, pp. 293-99.Google Scholar
  17. 17.
    A. Considère: Annales Pont et Chaussées, 1885, vol. 9 no. 7, pp. 574-775.Google Scholar
  18. 18.
    D.L. McLellan: J. Testing Eval., 1980, vol. 8, pp. 170-76.CrossRefGoogle Scholar
  19. 19.
    C.H. Cáceres, T. Din, A.K.M.B. Rashid, and J. Campbell: Mater. Sci. Technol., 1999, vol. 15, pp. 711-16.Google Scholar
  20. 20.
    U.F. Kocks: J. Eng. Mater. Tech., 1976, vol. 98, pp. 76-85.Google Scholar
  21. 21.
    H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865-75.CrossRefGoogle Scholar
  22. 22.
    M. Tiryakioğlu, J. Campbell, and J.T. Staley: Mater. Sci. Eng. A, 2004, vol. A368, pp. 205-11.Google Scholar
  23. 23.
    M. Tiryakioğlu, Mater. Sci. Eng. A, 2006, vol. A427, pp. 154-59.Google Scholar
  24. 24.
    M. Tiryakioğlu and N.D. Alexopoulos: Metall. Mater. Trans. A., 2008, vol. 39, pp. 2772-80.CrossRefGoogle Scholar
  25. 25.
    W.J. Poole and N. Charras: Mater. Sci. Eng. A, 2005, vol. A406, pp. 300-08.Google Scholar
  26. 26.
    E. Voce: Metallurgia, 1955, vol. 51, pp. 219-26.Google Scholar
  27. 27.
    M. Tiryakioğlu, J.T. Staley, Jr., and J. Campbell: Mater. Sci. Eng. A, 2008, vol. A487, pp. 383-87.Google Scholar
  28. 28.
    M. Tiryakioğlu, J. Campbell, and N.D. Alexopoulos: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1000-07.CrossRefADSGoogle Scholar
  29. 29.
    M. Tiryakioğlu and J. Campbell: Mater. Sci. Technol., 2009, vol. 25, pp. 784-89.CrossRefGoogle Scholar
  30. 30.
    M. Tiryakioğlu, J. Campbell, and N.D. Alexopoulos: Mater. Sci. Eng. A, 2009, vol. A506, pp. 23-26.Google Scholar
  31. 31.
    N.D. Alexopoulos and M. Tiryakioğlu: Mater. Sci. Eng. A, 2009, vol. 507, pp. 236-40.CrossRefGoogle Scholar
  32. 32.
    U.F. Kocks and H. Mecking: Prog.. Mater. Sci., 2003, vol. 48, pp. 171-273.CrossRefGoogle Scholar
  33. 33.
    H.J. Kleemola and M.A. Nieminen: Metall. Trans., 1974, vol. 5, pp. 1863-66.CrossRefGoogle Scholar
  34. 34.
    T.H. Courtney: Mechanical Behavior of Materials, McGraw Hill, New York, NY, 2000.Google Scholar
  35. 35.
    M. Tiryakioğlu and J. Campbell: Mechanisms and Mechanics of Fracture: Symp. in Honor of Professor J.F. Knott, TMS, Warrendale, PA, 2002, pp. 111-15.Google Scholar
  36. 36.
    N.D. Alexopoulos and M. Tiryakioğlu: Metall. Mater. Trans. A, 2009, vol. 40, pp. 702-14.CrossRefGoogle Scholar
  37. 37.
    M. Tiryakioğlu and J. Campbell: Mechanisms and Mechanics of Fracture: Symp. in Honor of Professor J.F. Knott, TMS, Warrendale, PA, 2002, pp. 111-5.Google Scholar
  38. 38.
    W.H. Hunt, Jr.: Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1992.Google Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2009

Authors and Affiliations

  • Murat Tiryakioğlu
    • 1
    Email author
  • John Campbell
    • 2
  • Nikolaos D. Alexopoulos
    • 3
  1. 1.Department of EngineeringRobert Morris UniversityMoon TownshipUSA
  2. 2.Department of Materials and MetallurgyUniversity of BirminghamEdgbastonUK
  3. 3.Department of Financial and Management EngineeringUniversity of the AegeanChiosGreece

Personalised recommendations