Advertisement

Effects of Small Additions of Copper and Copper + Nickel on the Oxidation Behavior of Iron

  • Bryan WeblerEmail author
  • Lan Yin
  • Seetharaman Sridhar
Article

Abstract

This study was undertaken to investigate the effect of small amounts of copper and copper + nickel additions on the oxidation rate and oxide/metal interface microstructure of iron. Three iron-based alloys were compared: 0.3 wt pct copper, 0.3 wt pct copper-0.1 wt pct nickel, and 0.3 wt pct copper-0.05 wt pct nickel. Alloy samples were oxidized in air at 1150 °C for 60, 300, and 600 seconds. Pure iron oxidized for 300 seconds was used as a reference material. The parabolic oxidation rate for the iron-copper alloy did not differ from that of pure iron, but the parabolic rate for the nickel-containing alloys decreased by a factor of 2. The microstructure of the iron-copper alloy consisted of a thin, copper-rich layer at the oxide/metal interface. Both nickel-containing alloys had perturbed oxide/metal interfaces consisting of alternating solid/liquid regions. The application of ternary alloy interface stability theories show that the perturbed interfaces arise from unequal diffusivities in the solid γ-iron phase. It is suggested that this perturbed interface microstructure causes the observed decrease in oxidation rate, by limiting the iron supply to the oxide.

Keywords

Oxidation Rate Interdiffusion Coefficient Interface Microstructure Parabolic Rate Constant Interface Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Center for Iron and Steelmaking Research, Carnegie Mellon University (Pittsburgh, PA), and the Pennsylvania Infrastructure Technology Alliance.

References

  1. 1.
    J.A.T. Jones, B. Bowman, and P.A. Lefrank: The Making, Shaping, and Treating of Steel—Steelmaking and Refining Volume, 11th ed., The AISE Steel Foundation, Pittsburgh, PA, 1998, pp. 525–660Google Scholar
  2. 2.
    Energetics Inc.: Energy and Environmental Profile of the U.S. Iron and Steel Industry, DOE/EE-0229, United States Department of Energy, Office of Industrial Technologies, Washington, DC, 2000, pp. 10–26Google Scholar
  3. 3.
    B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 1985, vol. 9, pp. 153–90Google Scholar
  4. 4.
    Q. Chen, and Z. Jin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 417–26CrossRefGoogle Scholar
  5. 5.
    S. Pötschke, and A.R. Büchner: Steel Res. Int., 2006, vol. 77, pp. 416–22Google Scholar
  6. 6.
    A. Nicholson, and J.D. Murray: J. Iron Steel Inst., 1965, vol. 203, pp. 1007–18Google Scholar
  7. 7.
    D.A. Melford: J. Iron Steel Inst., 1962, vol. 200, pp. 290–99Google Scholar
  8. 8.
    W.J.M. Salter: J. Iron Steel Inst., 1966, vol. 204, pp. 478–88Google Scholar
  9. 9.
    Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM INTERNATIONAL, Metals Park, OH, 1995, pp. 9350–91Google Scholar
  10. 10.
    B. Yalamanchili, P. Power, and J. Nelson: Wire J. Int., 1999, vol. 32, pp. 143–55Google Scholar
  11. 11.
    S. Akamatsu, T. Senuma, Y. Takada, and M. Hasebe: Mater. Sci. Technol., 1999, vol. 15, pp. 1301–07Google Scholar
  12. 12.
    S.V. Divinski, F. Hisker, C. Herzig, R. Filipek, and M. Danielewski: Def. Diff. Forum, 2005, vols. 237–240, pp. 50–61CrossRefGoogle Scholar
  13. 13.
    G.L. Fisher: J. Iron Steel Inst., 1969, vol. 207, pp. 1010–16Google Scholar
  14. 14.
    T. Fukagawa, and H. Fujikawa: Oxid. Met., 1999, vol. 52, pp. 177–94CrossRefGoogle Scholar
  15. 15.
    R.Y. Chen, and W.Y.D. Yuen: ISIJ Int., 2005, vol. 45, pp. 807–16CrossRefGoogle Scholar
  16. 16.
    C. Wagner: J. Electrochem. Soc., 1956, vol. 103, pp. 571–80CrossRefGoogle Scholar
  17. 17.
    H.J. Grabke, V. Leroy, and H. Viefhaus: ISIJ Int., 1995, vol. 35, pp. 95–113CrossRefGoogle Scholar
  18. 18.
    B.A. Webler, and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1245–54CrossRefGoogle Scholar
  19. 19.
    H. Abuluwefa, R.I.L. Guthrie, and F. Ajersch: Oxid. Met., 1996, vol. 46, pp. 423–40CrossRefGoogle Scholar
  20. 20.
    W. Rasband: ImageJ, Windows version 1.36, US National Institutes of Health, Bethesda, MDGoogle Scholar
  21. 21.
    R.Y. Chen, and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433–68CrossRefGoogle Scholar
  22. 22.
    K. Schwerdtfeger, and S. Zhou: Steel Res., 2003, vol. 74, pp. 538–48Google Scholar
  23. 23.
    V.G. Levich: Physicochemical Hydrodynamics, 1st ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962, p. 87. Google Scholar
  24. 24.
    L. Himmel, R.F. Mehl, and C.E. Birchenall: Trans. AIME, 1953, vol. 197, pp. 827–43Google Scholar
  25. 25.
    R.Y. Chen, and W.Y.D. Yuen: Oxid. Met., 2005, vol. 63, pp. 145–68CrossRefGoogle Scholar
  26. 26.
    R.T. Foley: J. Electrochem. Soc., 1962, vol. 109, pp. 1202–06CrossRefGoogle Scholar
  27. 27.
    F.J.J. Van Loo: Prog. Solid State Chem., 1990, vol. 20, pp. 47–99CrossRefGoogle Scholar
  28. 28.
    W.W. Mullins, and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51CrossRefGoogle Scholar
  29. 29.
    D.P. Whittle, D.J. Young, and W.W. Smeltzer: J. Electrochem. Soc., 1976, vol. 123, pp. 1073–79CrossRefGoogle Scholar
  30. 30.
    D.E. Coates, and J.S. Kirkaldy: Trans. ASM, 1969, vol. 62, pp. 426–36Google Scholar
  31. 31.
    J.D. Harrison, and C. Wagner: Acta Metall., 1959, vol. 7, pp. 722–35CrossRefGoogle Scholar
  32. 32.
    J.B. Clark, and F.N. Rhines: Trans. ASM, 1959, vol. 51, pp. 199–221Google Scholar
  33. 33.
    J.S. Kirklady, and L.C. Brown: Can. Metall. Q., 1963, vol. 2, pp. 89–117Google Scholar
  34. 34.
    L.E. Wirtz, and M.A. Dayananda: Metall. Trans. A, 1977, vol. 8A, pp. 567–75Google Scholar
  35. 35.
    J.S. Kirkaldy and D.Y. Young: Diffusion in the Condensed State, 1st ed., The Institute of Metals, London, 1987, pp. 163 and 361–400Google Scholar
  36. 36.
    D.E. Coates, and J.S. Kirkaldy: J. Cryst. Growth, 1968, vols. 3–4, pp. 549–54CrossRefGoogle Scholar
  37. 37.
    K. Majima, and H. Mitani: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 663–68Google Scholar
  38. 38.
    Y. Hanatate, K. Majima, and H. Mitani: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 669–73Google Scholar
  39. 39.
    K.J. Rönkä, A.A. Kodentsov, P.J.J. Van Loon, J.K. Kivilahti, and F.J.J. Van Loo: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2229–38CrossRefGoogle Scholar
  40. 40.
    A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilib. Diffus., 2000, vol. 21, pp. 269–80Google Scholar
  41. 41.
    B.A. Webler, and S. Sridhar: Def. Diff. Forum, 2008, vols. 273–276, pp. 713–23Google Scholar
  42. 42.
    N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, pp. 224–31CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2008

Authors and Affiliations

  1. 1.Department of Material Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations