Metallurgical and Materials Transactions B

, Volume 39, Issue 6, pp 870–884 | Cite as

Transient Mold Fluid Flow with Well- and Mountain-Bottom Nozzles in Continuous Casting of Steel

  • R. Chaudhary
  • Go-Gi Lee
  • B.G. Thomas
  • Seon-Hyo Kim


Nozzle shape plays a key role in determining the flow pattern in the mold of the continuous- casting process under both steady-state and transient conditions. This work applies computational models and experiments with a one-third scale water model to characterize flow in the nozzle and mold to evaluate well-bottom and mountain-bottom nozzle performance. Velocities predicted with the three-dimensional k-ε turbulence model agree with both particle- image velocimetry and impeller measurements in the water model. The steady-state jet velocity and angle leaving the ports is similar for the two nozzle-bottom designs. However, the results show that nozzles with a mountain-shaped bottom are more susceptible to problems from asymmetric flow, low-frequency surface-flow variations, and excessive surface velocities. The same benefits of the well-bottom nozzle are predicted for flow in the steel caster.


Particle Image Velocimetry Turbulent Kinetic Energy Large Eddy Simulation Water Model Surface Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Young-Jin Jeon and Professor Hyung-Jin Sung, Department of Mechanical Engineering, KAIST (South Korea), and Seong-Mook Cho, POSTECH (South Korea), for help with the PIV measurements. They also thank POSCO, Oh-Duck Kwon, Shin-Eon Kang, and POSCO Technical Research Laboratories for relevant data and providing the water model and ANSYS Inc. for supplying FLUENT. Support from the Continuous Casting Consortium, University of Illinois at Urbana–Champaign, POSCO, South Korea (Grant No. 4.0002397.01) and the National Science Foundation (Grant No. DMI 05-00453) is gratefully acknowledged.


  1. 1.
    B.G. Thomas: in Making, Shaping and Treating of Steel, 11th ed., vol. 5, Casting volume, A. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 14.1–14.41Google Scholar
  2. 2.
    J. Kubota, K. Okimoto, A. Shirayama, and H. Murakami: Steelmaking Conf. Proc., Iron and Steel Society, Warrendale, PA, 1991, vol. 74, pp. 233–41Google Scholar
  3. 3.
    M.B. Assar, P.H. Dauby, G.D. Lawson: Steelmaking Conf. Proc., ISS, Warrendale, PA, 2000, pp. 397–411Google Scholar
  4. 4.
    D. Gupta, A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64CrossRefADSGoogle Scholar
  5. 5.
    D. Gupta, A.K. Lahiri: Steel Res., 1992, vol. 63 (5), pp. 201–04Google Scholar
  6. 6.
    B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47CrossRefADSGoogle Scholar
  7. 7.
    B.G. Thomas, L. Zhang: ISIJ Int., 2001, vol. 41 (10), pp. 1181–93CrossRefGoogle Scholar
  8. 8.
    T. Honeyands, J. Herbertson: Steel Res., 1995, vol. 66 (7), pp. 287–93Google Scholar
  9. 9.
    N.J. Lawson, M.R. Davidson: J. Fluids Eng., 2002, vol. 124 (2), pp. 535–43CrossRefGoogle Scholar
  10. 10.
    D. Xu, W.K. Jones, J.W. Evans: in Processing of Metals and Advanced Materials: Modeling, Design and Properties, B.Q. Li, ed., TMS, Warrendale, PA, 1998, pp. 3–14Google Scholar
  11. 11.
    S. Sivaramakrishnan, B.G. Thomas, S.P. Vanka: in Materials Processing in the Computer Age, V. Voller, H. Henein, eds., TMS, Warrendale, PA, 2000, pp. 189–98Google Scholar
  12. 12.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67CrossRefADSGoogle Scholar
  13. 13.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84CrossRefADSGoogle Scholar
  14. 14.
    D.E. Hershey, B.G. Thomas, F.M. Najjar: Int. J. Numer. Methods Fluids, 1993, vol. 17 (1), pp. 23–47CrossRefADSGoogle Scholar
  15. 15.
    F.M. Najjar, B.G. Thomas, D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65CrossRefADSGoogle Scholar
  16. 16.
    B.G. Thomas, L.J. Mika, F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400CrossRefADSGoogle Scholar
  17. 17.
    X. Huang, B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (3–4), pp. 197–212CrossRefGoogle Scholar
  18. 18.
    K. Takatani, Y. Tanizawa, H. Mizukami, and K. Nishimura: ISIJ Int.., 2001, vol. 41 (10), pp. 1252–61CrossRefGoogle Scholar
  19. 19.
    Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702CrossRefGoogle Scholar
  20. 20.
    Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B (5), pp. 967–82CrossRefGoogle Scholar
  21. 21.
    B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41 (10), pp. 1262–71CrossRefGoogle Scholar
  22. 22.
    H. Versteeg, W. Malalasekra: An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach, Longman Scientific Technical, Essex, United Kingdom, 1995Google Scholar
  23. 23.
    B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence, Academic Press, London, 1972zbMATHGoogle Scholar
  24. 24.
    B.G. Thomas: in Making, Shaping and Treating of Steel, A.W. Cramb, ed., AISE Steel Foundation, Pittsburgh, PA, 2003Google Scholar
  25. 25.
    Y.A. Meng, B.G. Thomas: Metall. Trans. B, 2003, vol. 34B, pp. 685–705Google Scholar
  26. 26.
    B.T. Rietow: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 2007Google Scholar
  27. 27.
    D. Creech: Master’s Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 1999Google Scholar
  28. 28.
    FLUENT6.3-Manual, ANSYS Inc., Lebanon, NH, 2007Google Scholar
  29. 29.
    G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117–26CrossRefGoogle Scholar
  30. 30.
    B.E. Launder, D.B. Spalding: Comput. Meth. Appl. Mech. Eng., 1974, vol. 3 (2), pp. 269–89zbMATHCrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  • R. Chaudhary
    • 1
  • Go-Gi Lee
    • 2
  • B.G. Thomas
    • 1
  • Seon-Hyo Kim
    • 2
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  2. 2.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangSouth Korea

Personalised recommendations