Advertisement

Metallurgical and Materials Transactions B

, Volume 39, Issue 5, pp 655–661 | Cite as

Determination of the Phase Transformation Temperatures of the Fe-Co-Cu-Si System in the Fe-Rich Corner by Thermal Analysis

  • W. Banda
  • G.A. GeorgalliEmail author
  • C. Lang
  • J.J. Eksteen
Article

Abstract

A combination of differential thermal analysis (DTA) and drop-quench experiments were conducted on the Fe-Co-Cu-Si system within the compositional range of the ferrocobalt produced in the smelting of copper waste slags to recover copper and cobalt. In the temperatures investigated (>1000 °C), the system was found to contain two solid solutions, namely, α- and γ-Fe. At temperatures close to 1100 °C, a peritectic reaction resulted in a Cu-rich liquid in equilibrium with the solid solutions. Just below the liquidus temperature the γ-Fe was found to transform allotropically to α-Fe, which remained in equilibrium with the Cu-rich liquid. At the liquidus temperature a Fe-rich liquid phase was formed by a monotectic reaction between the Cu-rich liquid and the α-Fe. The liquidus temperature of the Fe-Co-Cu-Si system was found to decrease with increasing Si content. In the range studies (1 to 5.5 pct Si) the liquidus temperature decreased by 70 °C.

Keywords

Differential Thermal Analysis Liquidus Temperature Copper Slag Peritectic Temperature Monotectic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Mintek and the National Research Foundation (NRF) of South Africa for financial support and the staff at the Centre for Materials Engineering, University of Cape Town, for their assistance during the experimental work.

References

  1. 1.
    R.T. Jones, G.M. Denton, Q.G. Reynolds, J.A.L Parker, G.J.J van Tonder: J. S. Afr. Inst. Min. Metall., 2001, vol. 102 (5) pp. 5–9Google Scholar
  2. 2.
    L.R. Nelson, R. Sullivan, P. Jacobs, E. Munnik, P. Lewarne, E. Roos, M.J.N. Uys B. B. Salt, M. de Vries, K. McKenna, N. Voermann, B.O. Wasmund: J. S. Afr. Inst. Min. Metall., 2004, vol. 104 (9), pp. 551–61Google Scholar
  3. 3.
    M. Bamberger, L. Kaufman, R. Abbaschian, A. Munitz: Calphad, 2002, vol. 26, pp. 375–84CrossRefGoogle Scholar
  4. 4.
    D.I. Kim, R. Abbaschian: J. Phase Equilib., 2000, vol. 21 (1), pp. 25–31CrossRefGoogle Scholar
  5. 5.
    W.R. Maddocks and G.E. Clausen: Special Report 14, Iron and Steel Institute, London, 1936, pp. 116–24Google Scholar
  6. 6.
    M. Palumbo, S. Curiottoa, L. Battezzatia: CALPHAD, 2006, vol. 30, pp. 171–78CrossRefGoogle Scholar
  7. 7.
    C.P. Wang, X.J. Liu, J.L. Ikuo, O. Rouseki, K.K. Ishida: J. Phase Equilib., 2002, vol. 23 (3), pp. 236–45CrossRefGoogle Scholar
  8. 8.
    H. Ohtani, H. Suda, K. Ishida: ISIJ Int., 1997, vol. 37 (3), pp. 207–16CrossRefGoogle Scholar
  9. 9.
    V. Raghavan: J. Phase Equilib., 2002, vol. 23 (3), pp. 253–56CrossRefGoogle Scholar
  10. 10.
    A. Munitz, A.M. Bamberger, S. Wannaparhun, R. Abbashian: J. Mater. Sci., 2006, vol. 41, pp. 2749–59CrossRefGoogle Scholar
  11. 11.
    S. Bein, C. Colinet, M. Durand-Charre: J. Alloys Compd., 2000, vol. 313, pp. 133–43CrossRefGoogle Scholar
  12. 12.
    W. Banda, G.A. Georgalli, C. Lang, and J.J. Eksteen: J. Alloys Compd., 2007, doi:  10.1016/j.jallcom.2007.07.045
  13. 13.
    M. Hino, T. Nagasake, T. Washizu: J. Phase Equilib., 1999, vol. 20 (3), pp. 179–86CrossRefGoogle Scholar
  14. 14.
    V. Raghavan: J. Phase Equilib., 2002, vol. 23 (3), pp. 267–70CrossRefGoogle Scholar
  15. 15.
    D. Hanson, E.G. West: J. Inst. Met., 1934, vol. 54, pp. 95–116Google Scholar
  16. 16.
    N.I. Revina, A.K. Nikolayev, V.M. Rozenberg: Russ. Metall., translated from Izv. Akad. Nauk SSSR, Metally, 1975, vol. 1, pp. 182–85Google Scholar
  17. 17.
    J. Gronostajski: Rudy Metale Niezelazne, 1968, vol. 13, pp. 164–67Google Scholar
  18. 18.
    R. Vogel, K. Rosenthal: Arch. Eisenhüettenwes., 1934, vol. 7, pp. 689–91Google Scholar
  19. 19.
    P. Villars, A. Prince, H. Okamoto: Ternary Phase Diagram Handbook, ASM International, Materials Park, Ohio, 1991Google Scholar
  20. 20.
    H. Yakowitz, A.W. Ruff, and R.E. Michaelis: Special Publication 260–43, National Bureau of Standards (U.S.) Special Publication, Washington, DC, 1972, 11 ppGoogle Scholar
  21. 21.
    F. Stein, G. Sauthoff, M. Palm: J. Phase Equilib., 2002, vol. 23 (6), pp. 480–94CrossRefGoogle Scholar
  22. 22.
    W. Hume-Rothery, J.W. Christian, W.B. Pearson: Metallurgical Equilibrium Diagrams, Institute of Physics, London, 1952, pp. 165–74Google Scholar
  23. 23.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, Ohio, 2001, vol. 2Google Scholar
  24. 24.
    H.E. Exner, G. Petrow: ASM Handbook, ASM, Materials Park, Ohio, 2004, pp. 675–80Google Scholar
  25. 25.
    J.B. Macchesney, P.E. Rosenberg: in Refractory Materials, L.J. Margrave, ed., Academic Press, New York, 1970, pp. 113–65Google Scholar
  26. 26.
    D.R.F. West: Ternary Equilibrium Diagrams, 2nd ed., Chapman and Hall, New York, NY, 1982, pp. 16–41Google Scholar
  27. 27.
    R.I. Wu, J.H. Perepezko: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 497–501CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2008

Authors and Affiliations

  • W. Banda
    • 1
  • G.A. Georgalli
    • 1
    Email author
  • C. Lang
    • 2
  • J.J. Eksteen
    • 1
  1. 1.Department of Process EngineeringUniversity of StellenboschMatielandSouth Africa
  2. 2.Department of Mechanical EngineeringUniversity of Cape TownCape TownSouth Africa

Personalised recommendations