Metallurgical and Materials Transactions B

, Volume 39, Issue 2, pp 280–290 | Cite as

Measurement of Surface Tension, Viscosity, and Density at High Temperatures by Free-Fall Drop Oscillation

  • Ala Moradian
  • Javad Mostaghimi


The measurements of surface tension, viscosity, and density of metallic samples are described in this article. Samples are brought to their melting point by exposure to a radio-frequency–inductively coupled plasma (RF-ICP) torch. The measurements are based on oscillations in free-falling drops and the damping rate of the oscillations. The results of the measurements performed on copper and nickel samples showed a reasonable agreement with values calculated by other methods, such as drop-weight, pendant-drop, and drop-profile methods. According to the characteristics of this method, analysis of very high-temperature materials, such as refractories and ceramics, is possible.


Surface Tension Surface Tension Measurement Forced Levitation Pendant Drop Electromagnetic Levitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.I. Rusanov, V.A. Prokhorov: Interfacial Tensiometry, Elsevier, Amsterdam, 1996, pp. 82–350Google Scholar
  2. 2.
    J. Drelich, C. Fang, C.L. White: Encyclopaedia of Surface and Colloid Science, Marcel Dekker Inc., New York, NY, 2003Google Scholar
  3. 3.
    Y. Tian, R.G. Holt, R.E. Apfel: Phys. Fluids, 1995, vol. 7(12), pp. 2938–49CrossRefGoogle Scholar
  4. 4.
    F. Millot, J.C. Rifflet, G. Wille, V. Sarou-kanian, B. Glorieux: J. Am. Ceram. Soc., 2002, vol. 85(1), pp. 187–92CrossRefGoogle Scholar
  5. 5.
    G. Wille, F. Millot, J.C. Rifflet: Int. J. Thermophys., 2002, vol. 23(5), pp. 1197–1206CrossRefGoogle Scholar
  6. 6.
    H. Fujii, T. Matsumoto, and K. Nogi: Int. Conf. High Temp. Capillarity, Eusthopoulos and N. Sobczak, eds., Cracow, Poland, 1997, pp. 182–87Google Scholar
  7. 7.
    J.C. Barbe, C. Parayre, M. Daniel, M. Papoular, N. Kernevez: Int. J. Thermophys., 1999, vol. 20(4), pp. 1071–83CrossRefGoogle Scholar
  8. 8.
    A. Moradian, J. Mostaghimi: IEEE Trans. Plasma Sci., 2005, vol. 33(2), pp. 410–11CrossRefGoogle Scholar
  9. 9.
    T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, K. Nogi: Rev. Sci. Instrum., vol. 75(5), 2004, pp. 1219–21CrossRefGoogle Scholar
  10. 10.
    T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, K. Nogi: Meas. Sci. Technol., 2005, vol. 16, pp. 432–37CrossRefGoogle Scholar
  11. 11.
    R.G. Holt, J.J.Y. Tian, R.E. Apfel: J. Acoust. Soc. Am., 1997, vol. 102, pp. 3802–05CrossRefGoogle Scholar
  12. 12.
    I. Egry, G. Lohoefer, G. Jacobs: Phys. Rev. Lett., 1995, vol. 75, pp. 4043–46CrossRefGoogle Scholar
  13. 13.
    I. Egry, M. Langan, G. Lohofer: Philos. Trans. R. Soc. London Ser. A, 1998, vol. 356, pp. 845–56CrossRefGoogle Scholar
  14. 14.
    B. Glorieux, F. Millot, J. Rifflet: Int. J. Thermophys., 2002, vol. 23(5), pp. 1249–57CrossRefGoogle Scholar
  15. 15.
    P.-F. Paradis, J. Yu, T. Ishikawa, S. Yoda: Ann. N.Y. Acad. Sci., 2004, vol. 1027, pp. 464–73CrossRefGoogle Scholar
  16. 16.
    P.-F. Paradis, T. Ishikawa, S. Yoda: Meas. Sci. Technol., 2005, vol. 16, pp. 452–56CrossRefGoogle Scholar
  17. 17.
    L. Rayleigh: Proc. R. Soc. London, 1879, vol. 29, pp. 71–97CrossRefGoogle Scholar
  18. 18.
    H. Lamb: Hydrodynamics, Dover, New York, NY, 1945Google Scholar
  19. 19.
    S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability, Dover, New York, NY, 1961Google Scholar
  20. 20.
    L.S. Nelson: Extreme Temperature Studies with Droplets of Molten Refractory Materials, IUPAC, Research Traingle Park, NC, USA, 1967, vol. 63, pp. 565–74Google Scholar
  21. 21.
    D.L. Cummings, D.A. Blackburn: J. Fluid Mech., 1991, vol. 224, pp. 395–16CrossRefGoogle Scholar
  22. 22.
    M. Langen, T. Hibiya, M. Eguchi, I. Egry: J. Cryst. Growth, 1998, vol. 186, pp. 550–56CrossRefGoogle Scholar
  23. 23.
    P.C. Nordine, J.K.R. Weber, J.G. Abadie: Pure Appl. Chem., 2000, vol. 72(11), pp. 2127–36CrossRefGoogle Scholar
  24. 24.
    W.-K. Rhim, T. Ishikawa: Rev. Sci. Instrum., 2001, vol. 72(9), pp. 3572–75CrossRefGoogle Scholar
  25. 25.
    S. Schneider, I. Egry, I. Seyhan: Int. J. Thermophys., 2002, vol. 23(5), pp. 1241–48CrossRefGoogle Scholar
  26. 26.
    P.-F. Paradis, T. Ishikawa, S. Yoda: Int. J. Thermophys., 2002, vol. 23(3), pp. 825–42CrossRefGoogle Scholar
  27. 27.
    R.W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394–401CrossRefGoogle Scholar
  28. 28.
    I. Egry, H. Giffard, S. Schneider: Meas. Sci. Technol., 2005, vol. 16, pp. 426–31CrossRefGoogle Scholar
  29. 29.
    S. Mukherjee, W.L. Johnson, W.K. Rhim: Appl. Phys. Lett., 2005, vol. 86, pp. (014104)1–(014104)3CrossRefGoogle Scholar
  30. 30.
    T. Hibiya and I. Egry: Meas. Sci. Technol., 2005, vol. 16, pp. 317–26CrossRefGoogle Scholar
  31. 31.
    H. Fujii, T. Matsumoto, S. Izutani, S. Kiguchi, K. Nogi: Phys. Fluids, 2006, vol. 54, pp. 1221–25Google Scholar
  32. 32.
    M. Perez, Y. Brechet, L. Salvo, M. Papoular, M. Sury: Europhys. Lett., 1999, vol. 47(2), pp. 189–95CrossRefGoogle Scholar
  33. 33.
    A. Prosperetti: J. Mech., 1980, vol. 19, pp. 149–82Google Scholar
  34. 34.
    A. Prosperetti: J. Fluid Mech., 1980, vol. 100, pp. 333–47CrossRefGoogle Scholar
  35. 35.
    E. Becker, W.J. Hiller, T.A. Kowalewski: J. Fluid Mech., 1991, vol. 231, pp. 189–210CrossRefGoogle Scholar
  36. 36.
    A. Moradian: Ph.D. Thesis, University of Toronto, Toronto, 2007Google Scholar
  37. 37.
    T. Tate: Philos. Mag., 1864, vol. 27, pp. 176–180Google Scholar
  38. 38.
    W.D. Harkins, F.E. Brown: J. Am. Chem. Soc., 1919, vol. 41, pp. 499–524CrossRefGoogle Scholar
  39. 39.
    J.M. Andreas, E.A. Houser, W.B. Tucker: J. Phys. Chem., 1938, vol. 42, p. 1001CrossRefGoogle Scholar
  40. 40.
    A. Moradian and J. Mostaghimi: Proc. 17th Int. Symp. Plasma Chemistry, ISPC, Toronto, 2005Google Scholar
  41. 41.
    T.H. Young: Philos. Trans. R. Soc. London, 1805, vol. 95, pp. 65–87CrossRefGoogle Scholar
  42. 42.
    P. S. Laplace, Traité de Mécanique Céleste (Gauthier-Villars, Paris, 1839), suppl. au livre X, 1805 and 1806, resp. In Oeuvres compl. vol. 4.Google Scholar
  43. 43.
    N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettabality at High Temperatures, Pergamon, Elsevier Science and Technology, Netherlands, 1999Google Scholar
  44. 44.
    T. Iida, R.I. Guthrie: The Physical Properties of Liquid Metals, Oxford University Press, Oxford, United Kingdom, 1988Google Scholar
  45. 45.
    V. Zinovev: Handbook of Thermophysical Properties of Metals at High Temperature, Nova Science Publishers, Inc., Hauppauge, NY, 1996Google Scholar
  46. 46.
    R.J. Moffat: J. Coll. Interface Sci., 1988, vol. 1, pp. 3–17Google Scholar
  47. 47.
    A. Moradian, J. Mostaghimi: J. Fluids Eng., 2007, vol. 129(8), pp. 991–1002CrossRefGoogle Scholar
  48. 48.
    A. Moradian, J. Mostaghimi: TMS Lett., 2006, vol. 3(2), pp. 63–64Google Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations