Metallurgical and Materials Transactions B

, Volume 39, Issue 1, pp 16–22 | Cite as

Desulfurization Rate during the Copper Blow in a Peirce–Smith Converter

  • A. Roselló
  • J. Martínez
  • P. Barrios
  • F. Carrillo


The desulfurization rate in a Peirce–Smith converter (which works as a well-mixed reactor) was obtained during the copper blow. Conversion data of the copper sulfide as a function of the operation time were correlated distinguishing between two kinetic steps; in both cases, the conversion was proportional to time. The variation of the matte temperature was not influential, so the chemical resistance in the bulk of the melt can be considered negligible. The variation in the global volumetric coefficient deduced from the experimental data was justified by a model having two resistances to mass transfer, the gas-side resistance being constant and the liquid-side resistance increasing when the sulfide concentration decreased.


Desulfurization Bubble Size Copper Sulfide Desulfurization Rate Oxygen Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



interfacial area (m2)


specific surface (m2/m3 liquid)


concentration (mol/m3)


diffusivity (m2/s)


enhancement factor (—)


instantaneous enhancement factor (—)


gas holdup (—)


Henry constant (atm m3/mol)


overall kinetic coefficient (m/s)


overall kinetic coefficient (mol/atm·m2·s)


specific reaction rate (1/s)(mol/m3)1-n-m


mass-transfer coefficient in the gas phase (m/s)


mass-transfer coefficient in the liquid phase (m/s)

m, n

reaction orders (—)


initial number of sulfur mol (mol)

\( P_{\text{O}_2} \)

oxygen pressure (atm)


gas constant (atm m3/mol K)


time (s)


normalized time (—)


temperature (K)


gas velocity (m/s)


liquid volume (m3)


gas flowrate (m3/s)


iron conversion (—)


sulfur conversion (—)

















  1. 1.
    S. Goto: in Copper and Nickel Converters, R.E. Johnson, ed., TMS-AIME, Warrendale, PA, 1979, pp. 33–54Google Scholar
  2. 2.
    R. Shimpo, S. Watanabe, S. Goto, O. Ogawa: Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 295–316Google Scholar
  3. 3.
    A.K. Kyllo, G.G. Richards: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 153–61Google Scholar
  4. 4.
    M. Nagamori, P.C. Chaubal: Metall. Trans. B, 1982, vol. 13B, pp. 319–29CrossRefGoogle Scholar
  5. 5.
    R. Shridar, J.M. Toguri, S. Simeonov: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 191–200CrossRefGoogle Scholar
  6. 6.
    A.K. Kyllo and G.G. Richards: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 239–49 and 251–59Google Scholar
  7. 7.
    F. Ajersch, J.M. Toguri: Metall. Trans., 1972, vol. 3, pp. 2187–93CrossRefGoogle Scholar
  8. 8.
    Z. Asaki, S. Ando, Y. Kondo: Metall. Trans. B, 1988, vol. 19B, pp. 47–52CrossRefGoogle Scholar
  9. 9.
    A.H. Alyaser, J.K. Brimacombe: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 25–40CrossRefGoogle Scholar
  10. 10.
    Y. Fukunaka, K. Nishikawa, H.S. Sohn, Z. Asaki: Metall. Trans. B, 1991, vol. 22B, pp. 5–11CrossRefGoogle Scholar
  11. 11.
    H.S. Sohn, Y. Fukunaka, T. Oishi: Yazawa Int. Symp.: Metallurgical and Materials Processing. Principles and Technologies (I), F. Kongoli, K. Itagaki, C. Yamauchi, H.Y. Sohn, eds., TMS, Warrendale, PA, 2003, pp. 131–46Google Scholar
  12. 12.
    H. Jalkanen: Scand. J. Metall., 1981, vol. 10, pp. 257–62Google Scholar
  13. 13.
    Y.T. Shah, B.G. Kelkar, S.P. Godbole, W.D. Decker: AIChE J., 1982, vol. 28, pp. 353–79CrossRefGoogle Scholar
  14. 14.
    M. Milles, D. Mewes: Chem. Eng. Process, 1999, vol. 38, pp. 307–19CrossRefGoogle Scholar
  15. 15.
    S. Xu, Y. Qu, J. Chaouki, C. Guy: Int. J. Chem. Reactor Eng., 2005, vol. 3A, p. 54Google Scholar
  16. 16.
    J.B. Joshi: Chem. Eng. Sci., 2001, vol. 56, pp. 5893–5933CrossRefGoogle Scholar
  17. 17.
    B. Gourich, C. Vial, A.H. Essadki, F. Allan, M.B. Sohlami, M. Ziyad: Chem. Eng. Process, 2006, vol. 45, pp. 214–23CrossRefGoogle Scholar
  18. 18.
    M.J. Prince, H.W. Blanch: AIChE J., 1990, vol. 36, pp. 1485–99CrossRefGoogle Scholar
  19. 19.
    K. Wichterle, J. Wichterlová, L. Kulhánková: Chem. Eng. Comm., 2005, vol. 192, pp. 550–56CrossRefGoogle Scholar
  20. 20.
    A. Alexiadis, P. Gardin, J.F. Domgin: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 949–56CrossRefGoogle Scholar
  21. 21.
    D.W. Ashman, J.W. McKelliget, J.K. Brimacombe: Can. Metall. Q., 1981, vol. 20, pp. 387–95Google Scholar
  22. 22.
    A.E. Wraith: Blast Delivery and Tuyere Processes, Short Course on Copper Converting Practices, TMS Annual Meeting, San Antonio, TX, Feb. 1998Google Scholar
  23. 23.
    R. Blachnik, A. Muller: Thermochim. Acta, 2000, vol. 361, pp. 31–52CrossRefGoogle Scholar
  24. 24.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1143–59CrossRefGoogle Scholar
  25. 25.
    A. Sarrafi, M. Janialahmadi, H. Müller-Steingen, J.M. Smith: Can. J. Chem. Eng., 1999, vol. 77, pp. 11–21Google Scholar
  26. 26.
    G.A. Hughmark: Ind. Eng. Chem. Process Des. Dev., 1967, vol. 6, pp. 218–20CrossRefGoogle Scholar
  27. 27.
    K. Akita, F. Yoshida: Ind. Eng. Chem. Process Des. Dev., 1973, vol. 12, pp. 76–80CrossRefGoogle Scholar
  28. 28.
    I.G. Reilly, D.S. Scott, T.J.W. de Bruijn, D. MacIntyre: Can J. Chem. Eng., 1994, vol. 72, pp. 3–12CrossRefGoogle Scholar
  29. 29.
    R. Pohorecki, W. Monink, A. Zdrójkowski, P. Bielski: Chem. Eng. Sci., 2001, vol. 56, pp. 1167–74CrossRefGoogle Scholar
  30. 30.
    A. Elgozali, V. Linek, M. Fialová, O. Wein, J. Zahradník: Chem. Eng. Sci., 2002, vol. 57, pp. 2987–94CrossRefGoogle Scholar
  31. 31.
    M. Filla, J.F. Davidson, J.F. Bates, M.A. Eccles: Chem. Eng. Sci., 1976, vol. 31, pp. 359–67CrossRefGoogle Scholar
  32. 32.
    R.M. Davies and G. Taylor: Proc. R. Soc. London, 1950, Ser. A200, pp. 375–90Google Scholar
  33. 33.
    M. Sano, K. Mori: Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 344–52Google Scholar
  34. 34.
    R.C. Reid, J.M. Prausnitz, B.E. Poling: The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY, 1987Google Scholar
  35. 35.
    N.H. Chen, D.F. Othmer: J. Chem. Eng. Data, 1962, vol. 7, pp. 37–41CrossRefGoogle Scholar
  36. 36.
    H.S. Sohn, Y. Fukunaka, T. Oishi, Z. Asaki, H.Y. Sohn: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 651–61CrossRefGoogle Scholar
  37. 37.
    P.H. Calderbank, M.B. Moo-Young: Chem. Eng. Sci., 1961, vol. 16, pp. 39–54CrossRefGoogle Scholar
  38. 38.
    F. Carrillo, R. Hernandez, and A. Roselló: Proc. IX Mediterranean Congr. of Chemical Engineering, Barcelona, Spain, 2002, topic 1, p. 110Google Scholar
  39. 39.
    A.A. Shook, O. Pasca, and G.A:W. Eltringham: Proc. Copper 99, TMS, Warrendale, PA, 1999, vol. V, pp. 466–75Google Scholar
  40. 40.
    K.R. Westertep, W.P.M. vanSwaaij, A.A.C.M. Beenackers: Chemical Reactor Design and Operation, 2nd ed., John Wiley & Sons, New York, NY, 1987Google Scholar

Copyright information


Authors and Affiliations

  • A. Roselló
    • 1
  • J. Martínez
    • 2
  • P. Barrios
    • 2
    • 3
  • F. Carrillo
    • 1
  1. 1.Department of Chemical EngineeringUniversity of SevilleSevillaSpain
  2. 2.Atlantic Copper. CompanyHuelvaSpain
  3. 3.Cumerio CompanyBrusselsBelgium

Personalised recommendations