Metallurgical and Materials Transactions B

, Volume 38, Issue 5, pp 751–762 | Cite as

Characterization of Poorly-Crystalline Ferric Arsenate Precipitated from Equimolar Fe(III)-As(V) Solutions in the pH Range 2 to 8

  • J.F. Le Berre
  • R. Gauvin
  • G.P. Demopoulos


The neutralization of equimolar (0.1 M) Fe(III)-As(V) acidic sulfate or nitrate solutions at 22 °C (295 K) over the pH range 2 to 8 yielded a predominantly poorly-crystalline ferric arsenate that resembles its scorodite precursor: FeAsO4 · (2 + x)H2O (where 0 < x < 1). The X-ray powder diffraction (XRD) pattern of it consists of two broad peaks similar to those of two-line ferrihydrite, but clearly different. In addition to ferric arsenate, a small fraction of two-line ferrihydrite was found to be present in the precipitate, increasing in significance with the pH, from around 5 pct at pH 2 to 4 to around 30 pct at pH 8. A field emission gun–transmission electron microscope (FEG-TEM) analysis and a collection of X-ray chemical maps revealed a nanocrystalline structure that is relatively chemically homogeneous in the acidic domain (a constant iron-to-arsenic ratio at 0.98) but becomes progressively disordered and nonuniform at the high pH end. An aqueous phase arsenic concentration was found to increase with the pH and to vary at a fixed pH with the type of solution (SO4 vs NO3) and initial arsenic concentration used. Such variation in solubility appears to be linked to nanodomain structural differences.


Arsenate Arsenic Concentration Ferric Arsenate FeAsO4 Uniform Chemical Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. Stéphanie Somot for the production of two-line ferrihydrite and arsenate-adsorbed ferrihydrite samples and to the Montreal Network for Microscopy Imaging for the use of the FEG-TEM at Ecole Polytechnique in Montreal. Funding for this research was received through a NSERC Strategic Project grant. The research was sponsored by Areva Resources, Barrick Gold Corporation, Cameco Corporation, Hatch, Ltd., and Teck Cominco.


  1. 1.
    P.A. Riveros, J.E. Dutrizac, P. Spencer: Can. Metall. Q., 2001, vol. 40, pp. 395–420Google Scholar
  2. 2.
    M.T. Emett and G.H. Khoe: EPD Congr. 1994, G. Warren, ed., TMS, Warrendale, PA, 1993, pp. 153–66Google Scholar
  3. 3.
    R.G. Robins, P.L.M. Wong, T. Nishimura, G.H. Khoe, and J.C.Y. Huang: EPD Congr. 1992, J.P. Hager, ed., TMS, Warrendale, PA, 1992, pp. 31–39Google Scholar
  4. 4.
    P.M. Swash, A.J. Monhemius: in Effluent Treatment in the Mining Industry, S.H. Castro, F. Vergara, M.A. Sanchez, eds., Andros Ltd., Chile, 1998, pp. 119–61Google Scholar
  5. 5.
    D.M. Shermana, S. Randall: Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 4223–30CrossRefGoogle Scholar
  6. 6.
    G.A. Waychunas, B.A Rea, C.C. Fuller, J.A. Davis: Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 2251–69CrossRefGoogle Scholar
  7. 7.
    A. Manceau: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3647–53CrossRefGoogle Scholar
  8. 8.
    G.A. Waychunas, C.C. Fuller, B.A. Rea, J.A Davis: Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1765–81CrossRefGoogle Scholar
  9. 9.
    G.A. Waychunas, J.A. Davis, C.C. Fuller: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3655–61CrossRefGoogle Scholar
  10. 10.
    S. Fendorf, M.J. Eick, P. Grossl, D.L. Sparks: Environ. Sci. Technol., 1997, vol. 31, pp. 315–20CrossRefGoogle Scholar
  11. 11.
    D. Langmuir, J. Mahoney, J. Rowson: Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 2942–56CrossRefGoogle Scholar
  12. 12.
    B.J. Moldovan, M.J. Hendry: Environ. Sci. Technol., 2005, vol. 39, pp. 4913–20CrossRefGoogle Scholar
  13. 13.
    Y. Jia, G.P. Demopoulos, N. Chen, J.N. Cutler, and D.T. Jiang: in Hydrometallurgy 2003, C.A. Young, A.M. Alfantazi, C.G. Anderson, D.B. Dreisinger, G.B. Harris, and A. James, eds., TMS, Warrendale, PA, 2003, vol. 2, pp. 1923–35Google Scholar
  14. 14.
    Y. Jia, G.P. Demopoulos, N. Chen, J.N. Cutler: in Arsenic Metallurgy, R.G. Reddy, V. Ramachandran, eds., TMS, Warrendale, PA, 2005, pp. 137–48Google Scholar
  15. 15.
    N. Chen, D.T. Jiang, J. Cutler, T. Kotzer, Y. Jia, G.P. Demopoulos, and J.W. Rowson: Geochim. Cosmochim. Acta, submitted for publicationGoogle Scholar
  16. 16.
    Y. Jia, L. Xu, Z. Fang, G.P. Demopoulos: Environ. Sci. Technol., 2006, vol. 40, pp. 3248–53CrossRefGoogle Scholar
  17. 17.
    L. Carlson, J.M. Bigham, U. Schwertmann, A. Kyek, F. Wagner: Environ. Sci. Technol., 2002, vol. 36, pp. 1712–19CrossRefGoogle Scholar
  18. 18.
    K. Tozawa, Y. Umetsu, T. Nishimura: 107th AIME Annual Meeting, Denver, CO, TMS Paper Selection A, 1978, pp. 1–23Google Scholar
  19. 19.
    R.G. Robins: Am. Mineral., 1987, vol. 72, pp. 842–44Google Scholar
  20. 20.
    E. Krause, V.A. Ettel: Hydrometallurgy, 1989, vol. 22, pp. 311–37CrossRefGoogle Scholar
  21. 21.
    R.G. Robins: EPD Congress 1990, D.R. Gaskell, ed., TMS, Warrendale, PA, 1990, pp. 93–104Google Scholar
  22. 22.
    T. Nishimura, Y. Umetsu: in Minor Elements, C.A Young, ed., SME, Littleton, CO, 2000, pp. 105–12Google Scholar
  23. 23.
    J.F Le Berre, R. Gauvin, and G.P. Demopoulos: Coll. Surf., A, in pressGoogle Scholar
  24. 24.
    R.M. Cornell, U. Schwertmann: VCH Verlagsgesellschaft, VCH Publishers, New York, NY, 1996Google Scholar
  25. 25.
    Y. Jia, G.P. Demopoulos: Environ. Sci. Technol., 2005, vol. 39, pp. 9523–27CrossRefGoogle Scholar
  26. 26.
    J.F Le Berre, T.C. Cheng, R. Gauvin, G.P. Demopoulos: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 159–66CrossRefGoogle Scholar
  27. 27.
    J.I. Goldstein, D.B. Williams, G. Cliff: in Principles of Analytical Electron Microscopy, D.C. Joy, A.D. Romig Jr., J.I. Goldstein, eds., Plenum Press, New York, NY, 1986, pp. 155–217Google Scholar
  28. 28.
    K. Kitahama, R. Kiriyama, Y. Bala: Acta Crystallogr., 1975, vol. B31, pp. 322–24Google Scholar
  29. 29.
    M. Scrépel, F. d’Yvoire, H. Guérin: Bull. Soc. Chim. Fr., 1974, vols. 7–8, pp. 1207–10Google Scholar
  30. 30.
    F. d’Yvoire, M. Scrépel: Bull. Soc. Chim. Fr., 1974, vol. 7–8, pp. 1211–14Google Scholar
  31. 31.
    D.R. Peacor, P.J. Dunn: Am. Mineral., 1986, vol. 71, p. 230Google Scholar
  32. 32.
    J. Majzlan, A. Navrotsky, U. Schwertmann: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 1049–59CrossRefGoogle Scholar
  33. 33.
    C.F. Baes Jr., R.E. Mesmer: The Hydrolysis of Cations, R.E. Krieger Publishing Company, Malabar, FL, 1986Google Scholar
  34. 34.
    S. Singhania, Q. Wang, D. Filippou, G.P. Demopoulos: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 189–97CrossRefGoogle Scholar
  35. 35.
    D. Paktunc, J.E. Dutrizac: Can. Mineral., 2003, vol. 41, pp. 905–19CrossRefGoogle Scholar
  36. 36.
    R.A. Eggleton, R.W. Fitzpatrick: Clays Clay Miner., 1988, vol. 36, pp. 111–24CrossRefGoogle Scholar
  37. 37.
    J. Subrt, V. Stengl, M. Skokanek: Thermochim. Acta, 1992, vol. 211, pp. 107–19CrossRefGoogle Scholar
  38. 38.
    D.G. Rancourt, D. Fortin, T. Pichler, P.J. Thibault, G. Lamarch, R.V. Morris, P.H.J Mercier: Am. Mineral., 2001, vol. 86, pp. 834–51Google Scholar
  39. 39.
    D.E. Janney, J.M. Cowley, P.R. Buseck: Am. Mineral., 2000, vol. 85, pp. 1180–87Google Scholar
  40. 40.
    S.K. Gupta: J. Appl. Cryst., 1998, vol. 31, pp. 474–76CrossRefGoogle Scholar
  41. 41.
    J.W. Gibbs: Trans. Conn. Acad., III, 1875, pp. 108–248; reprinted in The Scientific Papers of J. Willard Gibbs, Ph.D., LL.D., Volume I: Thermodynamics, Ox Bow Press, Woodbridge, CT, 1993, pp. 55–371Google Scholar
  42. 42.
    G.P. Demopoulos: Hydrometallurgy, in pressGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations