Advertisement

Metallurgical and Materials Transactions B

, Volume 38, Issue 1, pp 63–83 | Cite as

Investigation of Fluid Flow and Steel Cleanliness in the Continuous Casting Strand

  • LIFENG ZHANGEmail author
  • SUBO YANG
  • KAIKE CAI
  • JIYING LI
  • XIAOGUANG WAN
  • BRIAN G. THOMAS
Article

Fluid flow in the mold region of the continuous slab caster at Panzhihua Steel is investigated with 0.6-scale water model experiments, industrial measurements, and numerical simulations. In the water model, multiphase fluid flow in the submerged entry nozzle (SEN) and the mold with gas injection is investigated. Top surface level fluctuations, pressure at the jet impingement point, and the flow pattern in the mold are measured with changing submergence depth, SEN geometry, mold width, water flow rate, and argon gas flow rate. In the industrial investigation, the top surface shape and slag thickness are measured, and steel cleanliness including inclusions and the total oxygen (TO) content are quantified and analyzed, comparing the old and new nozzle designs. Three kinds of fluid flow pattern are observed in the SEN: “bubbly flow,” “annular flow,” and an intermediate critical flow structure. The annular flow structure induces detrimental asymmetrical flow and worse level fluctuations in the mold. The SEN flow structure depends on the liquid flow rate, the gas flow rate, and the liquid height in the tundish. The gas flow rate should be decreased at low casting speed in order to maintain stable bubbly flow, which produces desirable symmetrical flow. Two main flow patterns are observed in the mold: single roll and double roll. The single-roll flow pattern is generated by large gas injection, small SEN submergence depth, and low casting speed. To maintain a stable double-roll flow pattern, which is often optimal, the argon should be kept safely below a critical level. The chosen optimal nozzle had 45-mm inner bore diameter, downward 15 deg port angle, 2.27 port-to-bore area ratio, and a recessed bottom. The pointed-bottom SEN generates smaller level fluctuations at the meniscus, larger impingement pressure, deeper impingement, and more inclusion entrapment in the strand than the recess-bottom SEN. Mass balances of inclusions in the steel slag from slag and slab measurements show that around 20 pct of the alumina inclusions are removed from the steel into the mold slag. However, entrainment of the mold slag itself is a critical problem. Inclusions in the steel slabs increase twofold during ladle changes and tenfold during the start and end of a sequence. All of the findings in the current study are important for controlling slag entrainment.

Keywords

Molten Steel Casting Speed Bubbly Flow Annular Flow Submerged Entry Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.T. Tsai, W.J. Sammon, D.E. Hazelton: Steelmaking Conf. Proc., vol. 73, ISS, Warrendale, PA, 1990, pp. 49–59Google Scholar
  2. 2.
    S. Chakraborty, W. Hill: 77th Steelmaking Conf. Proc., vol. 77, ISS, Warrendale, PA, 1994, pp. 389–95Google Scholar
  3. 3.
    H. Uehara, H. Osanai, J. Hasunuma, K. Hara, T. Nakagawa, M. Yoshida, S. Yuhara: La Rev. Metall.-CIT, 1998, vol. 95 (10), pp. 1273–85Google Scholar
  4. 4.
    M. Byrne, T.W. Fenicle, A.W. Cramb: Steelmaking Conf. Proc., 1985, vol. 68, pp. 451–61Google Scholar
  5. 5.
    M. Byrne, T.W. Fenicle, A.W. Cramb: Iron Steelmaker, 1988, vol. 15 (6), pp. 41–50Google Scholar
  6. 6.
    M. Byrne, T.W. Fenicle, A.W. Cramb: ISS Trans., 1989, vol. 10, pp. 51–60Google Scholar
  7. 7.
    P. Rocabois, J.-N. Pontoire, V. Delville, I. Marolleau: ISSTech2003 Conf. Proc., ISS, Warrendale, PA, 2003, pp. 995–1006Google Scholar
  8. 8.
    A. Jungreithmeier, E. Pissenberger, K. Burgstaller, J. Mortl: ISSTech2003 Conf. Proc., ISS, Warrendale, PA, 2003, pp. 227–40Google Scholar
  9. 9.
    A.R. Obman, W.T. Germanoski, R.C. Sussman: in 64th Steelmaking Conf. Proc, vol. 64, ISS, Warrendale, PA, 1981, pp. 254–58Google Scholar
  10. 10.
    J. Yoshida, M. Iguchi, S. Yokoya: Tetsu-to-Hagané, 2001, vol. 87 (8), pp. 529–35Google Scholar
  11. 11.
    N.A. McPherson: Steelmaking Conf. Proc., vol. 68, ISS, Warrendale, PA, 1985, pp. 13–25Google Scholar
  12. 12.
    H. Jacobi, H.-J. Ehrenberg, K. Wunnenberg: Stahl Eisen., 1998, vol. 118 (11), pp. 87–94Google Scholar
  13. 13.
    T. Wei, F. Oeters: Steel Res., 1992, vol. 63 (2), pp. 60–68Google Scholar
  14. 14.
    M. Iguchi, Y. Sumida, R. Okada, Z. Morita: Tetsu-to-Hagané, 1993, vol. 79 (5), pp. 569–75Google Scholar
  15. 15.
    S.-H. Kim, R.J. Fruehan: Metall. Trans. B, 1987, vol. 18B, pp. 381–90Google Scholar
  16. 16.
    M. Iguchi, Y. Sumida, R. Okada, and Z.-I. Morita: ISIJ Int., 1993, Vol. 34 (2), pp. 164–70Google Scholar
  17. 17.
    R. McDavid, B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 672–85Google Scholar
  18. 18.
    B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47Google Scholar
  19. 19.
    T. Teshima, J. Kubota, M. Suzuki, K. Ozawa, T. Masaoka, S. Miyahara: Tetsu-to-Hagané, 1993, vol. 79 (5), pp. 576–82Google Scholar
  20. 20.
    J. Kubota, K. Okimoto, A. Shirayama, H. Murakami: Proc. 6th Int. Iron and Steel Congr., vol. 3, Iron and Steel Institute of Japan, Tokyo, 1990, pp. 356–63Google Scholar
  21. 21.
    J. Kubota, K. Okimoto, M. Suzuki, A. Shirayama, and T. Masaoka: ISC. 6th Int. Iron and Steel Congr., vol. 3, Steelmaking I, Nagoya, Japan, Oct. 21–26, ISIJ, Tokyo, 1990, pp. 356–63Google Scholar
  22. 22.
    Y. Sasabe, S. Kubota, A. Koyama, H. Miki: ISIJ Int., 1990, vol. 30 (2), pp. 136–41Google Scholar
  23. 23.
    J. Kubota, K. Okimoto, A. Shirayama, H. Murakami: in Mold Operation for Quality and Productivity, A.W. Cramb E. Szekeres, eds., ISS, Warrendale, PA, 1991Google Scholar
  24. 24.
    J. Kubota, K. Okioto, A. Shirayama, H. Murakami: Steelmaking Conf. Proc., vol. 74, ISS, Warrendale, PA, 1991, pp. 233–41Google Scholar
  25. 25.
    B.G. Thomas: in Making, Shaping and Treating of Steel: Continuous Casting, A. Cramb, ed., AISE Steel Foundation, vol. 5, Pittsburgh, PA, 2003, pp. 14.1–14.41Google Scholar
  26. 26.
    W.H. Emling, T.A. Waugaman, S.L. Feldbauer, A.W. Cramb: 77th Steelmaking Conf. Proc., vol. 77, ISS, Warrendale, PA, 1994, pp. 371–79Google Scholar
  27. 27.
    S. Feldbauer, A. Cramb: PTD Conf. Proc., vol. 13, ISS, Warrendale, PA, 1995, pp. 327–40Google Scholar
  28. 28.
    T. Honeyands, J. Herbertson: Steel Res., 1995, vol. 66 (7), pp. 287–93Google Scholar
  29. 29.
    M. Gebhard, Q.L. He, J. Herbertson: Steelmaking Conf. Proc., vol. 76, ISS, Warrendale, PA, 1993, pp. 441–46Google Scholar
  30. 30.
    W.H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W. Cramb: Steelmaking Conf. Proc., Chicago, IL, Apr. 13–16, 1997, ISS, Warrendale, PA, 1994, vol. 77, pp. 371–79Google Scholar
  31. 31.
    K.I. Afanas’Eva, T.P. Iventsov: Stal, 1958, vol. 18 (7), pp. 599–604Google Scholar
  32. 32.
    N.T. Mills, L.F. Barnhardt: J. Met., 1971, vol. 23 (11), pp. 37–43Google Scholar
  33. 33.
    N.T. Mills, L.F. Barnhardt: Open Hearth Proc., vol. 54, TMS-AIME, Warrendale, PA, 1971, pp. 303–15Google Scholar
  34. 34.
    J. Szekely, R.T. Yadoya: Metall. Trans. B, 1972, vol. 3B, pp. 2673–80Google Scholar
  35. 35.
    L.J. Heaslip, J. Schade: Iron Steelmaker, 1999, vol. 26 (1), pp. 33–41Google Scholar
  36. 36.
    L.J. Heaslip, I.D. Sommerville, A. McLean, L. Swartz, W.G. Wilson: Iron Steelmaker, 1987, vol. 14 (8), pp. 49–64Google Scholar
  37. 37.
    D. Gupta, S. Subramaniam, A.K. Lahiri: Steel Res., 1991, vol. 62 (11), pp. 496–500Google Scholar
  38. 38.
    D. Gupta, S. Chakraborty, A.K. Lahiri: ISIJ Int., 1997, vol. 37 (7), pp. 654–58Google Scholar
  39. 39.
    D. Gupta, A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64CrossRefGoogle Scholar
  40. 40.
    D. Gupta, A.K. Lahiri: Metall. Mater. Trans. B, 1994, vol. 27B, pp. 695–98Google Scholar
  41. 41.
    D. Gupta, A.K. Lahiri: Ironmaking Steelmaking, 1996, vol. 23(4), pp. 361–63Google Scholar
  42. 42.
    H. Tanaka, H. Kuwatori, R. Nisihara: Tetsu-to-Hagané, 1992, vol. 78(5), pp. 761–66Google Scholar
  43. 43.
    M. Iguchi, J. Yoshida, T. Shimzu, Y. Mizuno: ISIJ Int., 2000, vol. 40(7), pp. 685–91Google Scholar
  44. 44.
    Z. Wang, K. Mukai, D. Izu: ISIJ Int., 1999, vol. 39 (2), pp. 154–63Google Scholar
  45. 45.
    M. Iguchi, N. Kasai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60CrossRefGoogle Scholar
  46. 46.
    B.G. Thomas, L.J. Mika, F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400Google Scholar
  47. 47.
    X. Huang B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (304), pp. 197–212CrossRefGoogle Scholar
  48. 48.
    J. Herbertson, Q.L. He, P.J. Flint, R.B. Mahapatra: in Steelmaking Conf. Proc., vol. 74, ISS, Warrendale, PA, 1991, pp. 171–85Google Scholar
  49. 49.
    J. Herbertson and P. Austin: Modelling of Casting, Welding, and Advanced Solidification Processes-VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., Palm Coast, FL, 1993, TMS, Warrendale, PA, 1993, vol. VI, pp. 689–700Google Scholar
  50. 50.
    L. Zhang and B.G. Thomas: Report No. CCC200402, University of Illinois at Urbana–Champaign, Urbana, IL, 2004Google Scholar
  51. 51.
    Q. Yuan, T. Shi, B.G. Thomas, and S.P. Vanka: Computational Modeling of Materials, Minerals and Metals Processing, Seattle, WA, Fe. 180-20, 2002, B. Cross and J.W. Evans, eds., TMS, Warrendale, PA, 2002, pp. 491–500Google Scholar
  52. 52.
    Q. Wu: Acta Mathematicae Applacatae Sinica, 1978, vol. 1 (4), pp. 283–99Google Scholar
  53. 53.
    D.C. Montgomery: Design and Analysis of Experiments, 3rd ed., Wiley, New York, NY, 1991Google Scholar
  54. 54.
    K.T. Fang, Y. Wang: Numer-Theoretic Methods in Statistics, Chapman and Hall, New York, NY, 1994Google Scholar
  55. 55.
    Q. Zhang, Y.-W. Leung: IEEE Trans. Evolutionary Comput., 1999, vol. 3 (1), pp. 53–62CrossRefGoogle Scholar
  56. 56.
    Y.-W. Leung, Y. Wang: IEEE Trans. Evolutionary Comput., 2001, vol. 5 (1), pp. 41–53CrossRefGoogle Scholar
  57. 57.
    W.S. Yang, F. Jona, O.M. Marcus: J. Vac. Sci. Technol. B, 1983, vol. 1 (3), pp. 718–22CrossRefGoogle Scholar
  58. 58.
    Y. Bao, J. Zhu, N. Tian, B. Xu: J. Univ. Sci. Technol. Beijing (English Edition), 1999, vol. 6 (1), pp. 15–19Google Scholar
  59. 59.
    R. Sanchez-Perez, R.D. Morales, M. Diaz-Cruz, O. Olivares-Xometl, J. Palafox-Ramos: ISIJ Int., 2003, vol. 43 (5), pp. 637–46Google Scholar
  60. 60.
    J. Szekely, V. Stanek: Metall. Trans., 1970, vol. 1, pp. 119–26Google Scholar
  61. 61.
    B.G. Thomas, L. Zhang: ISIJ Int., 2001, vol. 41 (10), pp. 1181–93Google Scholar
  62. 62.
    S.K. Choudhary, D. Mazumdar: ISIJ Int., 1994, vol. 34 (7), pp. 584–92Google Scholar
  63. 63.
    S.K. Choudhary, D. Mazumdar: Steel Res., 1995, vol. 66 (5), pp. 199–205Google Scholar
  64. 64.
    J. Szekely, R.T. Yadoya: Metall. Trans., 1973, vol. 4, pp. 1379–88Google Scholar
  65. 65.
    S. Asai, J. Szekely: Ironmaking Steelmaking, 1975, vol. 3 (3), pp. 205–13Google Scholar
  66. 66.
    B.E. Launder, D.B. Spalding: Comp. Meth. Appl. Mech. Eng., 1974, vol. 13 (3), pp. 269–89CrossRefGoogle Scholar
  67. 67.
    B.G. Thomas, F.M. Najjar: Appl. Mathemat. Model., 1991, vol. 15 (5), pp. 226–43zbMATHCrossRefGoogle Scholar
  68. 68.
    D.E. Hershey, B.G. Thomas, F.M. Najjar: Int. J. Numer. Methods Fluids, 1993, vol. 17 (1), pp. 23–47CrossRefGoogle Scholar
  69. 69.
    M. Yao, M. Ichimiya, M. Tamiya, K. Suzuki, K. Sugiyama, R. Mesaki: Trans. ISIJ, 1984, vol. 24 (2), pp. s211–15Google Scholar
  70. 70.
    M. Yao, M. Ichimiya, S. Kiyohara, K. Suzuki, K. Sugiyama, R. Mesaki: 68th Steelmaking Conf. Proc., ISS-AIME, Warrendale, PA, 1985, pp. 27–33Google Scholar
  71. 71.
    J. Smagorinsky: Monthly Weather Rev., 1963, vol. 91, pp. 99–164Google Scholar
  72. 72.
    S. Sivaramakrishnan, B.G. Thomas, and S.P. Vanka: in Materials Processing in the Computer Age, V. Voller and H. Henein, eds., TMS, Warrendale, PA, 2000, vol. 3, pp. 189–98Google Scholar
  73. 73.
    Y. Tanizawa, M. Toyoda, K. Takatani, T. Hamana: La Rev. Metall.-CIT, 1993, vol. 90 (8), pp. 993–1000Google Scholar
  74. 74.
    I. Sawada, Y. Kishida, K. Okazawa, H. Tanaka: Tetsu-to-Hagané, 1993, vol. 79 (2), pp. 160–36Google Scholar
  75. 75.
    I. Sawada, K. Okazawa, E. Takeuchi, K. Shigematsu, H. Tanaka: Nippon Steel Technical Report, 1995, vol. 67, pp. 7–12Google Scholar
  76. 76.
    Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82Google Scholar
  77. 77.
    Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702Google Scholar
  78. 78.
    Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B (4), pp. 703–14Google Scholar
  79. 79.
    L. Zhang, J. Aoki, and B.G. Thomas: in Materials Science and Technology 2004 (MSandT’04), TMS and AIST, Warrendale, PA, 2004, vol. 2, pp. 161–78Google Scholar
  80. 80.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67Google Scholar
  81. 81.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84Google Scholar
  82. 82.
    H. Bai, B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 702–22Google Scholar
  83. 83.
    A. Imamura, A. Kusano, N. Moritama: Tetsu-to-Hagané, 1992, vol. 78 (3), p. 101–06Google Scholar
  84. 84.
    N. Bessho, R. Yoda, H. Yamasaki: Proc. 6th Int. Iron and Steel Congr., vol. 3, ISIJ, Tokyo, 1990, pp. 340–47Google Scholar
  85. 85.
    B. Grimm, P. Andrzejewski, K. Wagner, K.-H. Tacke: Stahl Eisen., 1995, vol. 115 (2), pp. 71–78Google Scholar
  86. 86.
    B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar: ISIJ Int., 2001, vol. 41 (10), pp. 1262–72Google Scholar
  87. 87.
    L. Zhang, S. Yang, X. Wang, K. Cai, J. Li, X. Wan, B.G. Thomas: AISTech2004, ISS, Warrendale, PA, 2004, pp. 879–94Google Scholar
  88. 88.
    F.G. Wilson, M.J. Heesom, A. Nicholson, A.W.D. Hills: Ironmaking Steelmaking, 1987, vol. 14 (6), pp. 296–309Google Scholar
  89. 89.
    X. Huang, B.G. Thomas, F.M. Najjar: Metall. Trans. B, 1992, vol. 23B, pp. 339–56Google Scholar
  90. 90.
    J. Anagnostopoulos, G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1095–1105CrossRefGoogle Scholar
  91. 91.
    A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B (6), pp. 1321–27CrossRefGoogle Scholar
  92. 92.
    G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117–26CrossRefGoogle Scholar
  93. 93.
    R.H.M.G. Nabben, R.P.J. Duursma, A.A. Kamperman, J.L. Lagerberg: Ironmaking Steelmaking, 1998, vol. 25 (5), pp. 403–06Google Scholar
  94. 94.
    FLUENT6 .1-Manual, Fluent Inc., Lebanon, NH, 2003Google Scholar
  95. 95.
    G. Shi, L. Zhang, Y. Zheng, J. Zhi, W. Wang, J. Zhang, W. Wang, X. Wang: Iron Steel, 2000, vol. 35 (3), pp. 12–15 (in Chinese)Google Scholar
  96. 96.
    J. Birat, M. Larrecq, J. Lamant, and J. Petegnief: in Mold Operation for Quality and Productivity, A.W. Cramb and E. Szekeres, eds., ISS, Warrendale, PA, 1991, pp. 3–14Google Scholar
  97. 97.
    M. Hanao, M. Kawamoto, H. Mizukami, K. Hanazaki: Steelmaking Conf. Proc., vol. 82, ISS, Warrendale, PA, 1999, pp. 63–70Google Scholar
  98. 98.
    P.H. Dauby, M.B. Assar, G.D. Lawson: La Rev. Metall.-CIT, 2001, vol. 98 (4), pp. 353–66Google Scholar
  99. 99.
    M.B. Assar, P.H. Dauby, G.D. Lawson: Steelmaking Conf. Proc., vol. 83, ISS, Warrendale, PA, 2000, pp. 397–411Google Scholar
  100. 100.
    P.H. Dauby, S. Kunstreich: ISSTech2003, ISS, Warrendale, PA, 2003, pp. 491–503Google Scholar
  101. 101.
    L. Zhang, B.G. Thomas: ISIJ Int., 2003, vol. 43 (3), pp. 271–91Google Scholar
  102. 102.
    M. Burty, C. Pusse, M. Alvarez, and P. Gauje: 2001 Steelmaking Conf. (ISS), Baltimore, MD, 2001, M.A. Baker and D.L. Kanagy, eds., 2001, vol. 84, pp. 89–98Google Scholar
  103. 103.
    M. Burty, M. Larrecq, C. Pusse, and Y. Zbaczyniak: PTD Conf. Proc., ISS, Warrendale, PA, 1995, vol. 13, pp. 287–92; La Rev. Metall.-CIT, 1996, Oct., pp. 1249–55Google Scholar
  104. 104.
    U. Sjostrom, M. Burty, A. Gaggioli, and J. Radot: 81st Steelmaking Conf. Proc., Toronto, March 22–25, 1998, ISS, Warrendale, PA, 1998, vol. 81, pp. 63–71Google Scholar
  105. 105.
    F.M. Najjar, B.G. Thomas, D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65Google Scholar
  106. 106.
    D. Creech: Master’s Thesis, University of Illinois at Urbana–Champaign, Champaign, 1998Google Scholar
  107. 107.
    Z. Wang, K. Mukai, Z. Ma, M. Nishi, H. Tsukamoto, F. Shi: ISIJ Int., 1999, vol. 39 (8), pp. 795–803Google Scholar
  108. 108.
    T. Shi, B.G. Thomas: “Effect of Gas Bubble Size on Fluid Flow in Continuous Casting Mold,” Continuous Casting Consortium at the University of Illinois at Urbana–Champaign, Urbana, IL, 2001Google Scholar
  109. 109.
    T. Honeyands, J. Lucas, J. Cambers, J. Herbertson: Steelmaking Conf. Proc., vol. 75, ISS, Warrendale, PA, 1992, pp. 451–59Google Scholar
  110. 110.
    G. Abbel, W. Damen, G. Decendt, W. Tiekink: ISIJ Int., 1996, vol. 36, pp. S219–22Google Scholar
  111. 111.
    L. Kiriha, H. Tosawa, K. Sorimachi: VCAMP-ISIJ, 2000, vol. 13, p. 120Google Scholar
  112. 112.
    L. Zhang, S. Taniguchi: Int. Mater. Rev., 2000, vol. 45 (2), pp. 59–82CrossRefGoogle Scholar
  113. 113.
    J. Wei, Z. Tian, L. Zhang, K. Cai, Y. Zhou: Proc. AISTech 2005 Iron and Steel Technology Conf. Expo., vol. II, AIST, Warrendale, PA, 2005, pp. 585–92Google Scholar
  114. 114.
    L. Zhang, B.G. Thomas, K. Cai, L. Zhu, J. Cui: ISSTech2003, ISS, Warrendale, PA, 2003, pp. 141–56Google Scholar
  115. 115.
    Q. Yuan, B.G. Thomas, S.P. Vanka: ISSTech2003 Conf. Proc., ISS, Warrendale, PA, 2003, pp. 913–27Google Scholar
  116. 116.
    I.R. Lee, J. Chai, and K. Shin: 71th Steelmaking Conf. Proc., ISS, Warrendale, PA, 1988, vol. 71, pp. 175–80Google Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  • LIFENG ZHANG
    • 1
    Email author
  • SUBO YANG
    • 2
  • KAIKE CAI
    • 3
  • JIYING LI
    • 3
  • XIAOGUANG WAN
    • 3
  • BRIAN G. THOMAS
    • 4
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Technical Research Center, Panzhihua Iron and Steel CompanyPanzhihuaPeople’s Republic of China
  3. 3.School of MetallurgyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaUSA

Personalised recommendations