Metallurgical and Materials Transactions B

, Volume 36, Issue 4, pp 479–487 | Cite as

Mixing time and correlation for ladles stirred with dual porous plugs

  • Jayanta Mandal
  • Sujoy Patil
  • M. Madan
  • Dipak Mazumdar


Bulk mixing times up to a degree of 95 pct were measured in three different, cylindrical-shaped water model ladles (D=0.60 m, 0.45 m, and 0.30 m, respectively) in which, water was agitated by air introduced through two tuyeres/nozzles placed diametrically opposite at the base of the vessels at ±1/2 R positions. To this end, the electrical conductivity measurement technique was applied. A range of gas flow rates and liquid depths were investigated (viz. 0.7≤L/D≤1.2 and 0.002≤ɛ m (watt/kg)≤0.01) and these were so chosen to conform to the practical ladle refining conditions. In the beginning, extensive experimental trials were carried out to assess the reliability of the measurement technique. In addition, some experiments were carried out to determine the location of the probe in the vessel such that measured mixing times could be interpreted as the bulk mixing times.

It was observed that for smaller gas flow rates (or specific energy input rates), 95 pct bulk mixing times tend to decrease appreciably with increasing gas flow rates (e.g., τ mixQ −0.58. However, for relatively higher flow rates, the dependence was found to be less pronounced, mixing times decreasing nearly in proportion to a third power of gas flow rates. Similarly, it was found that there exists a critical gas flow rate for any given vessel beyond which mixing times in dual plug stirred configuration are somewhat shorter than those in equivalent axi-symmetrical systems. A dimensional analysis followed by multiple regression of the experimental data (for ɛ m ≥0.07 W/kg) indicated that mixing times in ladles fitted with dual plugs located diametrically opposite at ±R/2 locations could be reasonably described via τ mix, 95 pct=15Q −0.38 L −0.56 R 2.0 in which L is the depth of liquid (m), R is the vessel radius (m), and Q is the ambient flow rate (referenced to mean height and temperature of the liquid). Finally, the adequacy and appropriateness of the correlation was demonstrated with reference to the experimental data derived from a 0.20 scale, tapered cylindrical-shaped water model of a 140 T industrial ladle as well as scaling equations and modeling criteria reported in the literature.


Material Transaction Iron Steel Inst Porous Plug Liquid Depth Critical Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Mazumdar and R.I.L. Guthrie: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1–20.Google Scholar
  2. 2.
    S. Joo and R.I.L. Guthrie: Metall. Trans. B, 1992, vol. 21B, pp. 765–78.Google Scholar
  3. 3.
    M. Zhu, T. Inomoto, I. Sawada, and T.C. Hsiao: Iron Steel Inst. Jpn., 1995, vol. 35, pp. 472–79.Google Scholar
  4. 4.
    K. Nakanishi, T. Saito, T. Nozaki, Y. Kato, and K. Suzuki: Proc. Steelmaking Conf., AIME, Warrendale, PA, 1982, pp. 101–08.Google Scholar
  5. 5.
    D. Mazumdar and R.I.L. Guthrie: Metall. Trans. B, 1986, vol. 17B, pp. 725–33.Google Scholar
  6. 6.
    S. Asai, T. Okamoto, J. He, and I. Muchi: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 43–50.Google Scholar
  7. 7.
    D. Mazumdar and R.I.L. Guthrie: ISS Trans., 1999, vol. 9, pp. 89–96.Google Scholar
  8. 8.
    Polymath software: Scholar
  9. 9.
    M. Iguchi, K. Nakamura, and R. Tsujino: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 569–75.CrossRefGoogle Scholar
  10. 10.
    D. Mazumdar, C. Seybert, D. Steinfardt, and J.W. Evans: Iron Steel Inst. Jpn., 2003, vol. 43, pp. 132–34.Google Scholar
  11. 11.
    M. Iguchi, T. Kondoh, and K. Nakajima: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 605–12.CrossRefGoogle Scholar
  12. 12.
    D. Mazumdar, H.B. Kim, and R.I.L. Guthrie: Ironmaking and Steelmaking, 2000, vol. 27, pp. 302–09.CrossRefGoogle Scholar
  13. 13.
    D. Mazumdar and J.W. Evans: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp. 447–61.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • Jayanta Mandal
    • 1
  • Sujoy Patil
    • 2
  • M. Madan
    • 2
  • Dipak Mazumdar
    • 2
  1. 1.Ispat IndustriesDolviIndia
  2. 2.the Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations