Metallurgical and Materials Transactions B

, Volume 35, Issue 5, pp 967–982

Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster

  • Quan Yuan
  • S. P. Vanka
  • B. G. Thomas
  • Sivaraj Sivaramakrishnan
Article
  • 288 Downloads

Abstract

Single-phase turbulent flow in a 0.4-scale water model of a continuous steel caster is investigated using large eddy simulations (LES) and particle image velocimetry (PIV). The computational domain includes the entire submerged entry nozzle (SEN) starting from the tundish exit and the complete mold region. The results show a large, elongated recirculation zone in the SEN below the slide gate. The simulation also shows that the flow exiting the nozzle ports has a complex time-evolving pattern with strong cross-stream velocities, which is also seen in the experiments. With a few exceptions, which are probably due to uncertainties in the measurements, the computed flow field agrees with the measurements. The instantaneous jet is seen to have two typical patterns: a wobbling “stair-step” downward jet and a jet that bends upward midway between the SEN and the narrow face. A 51-second time average suppressed the asymmetries between the two halves of the upper mold region. However, the instantaneous velocity fields can be very different in the two halves. Long-term flow asymmetry is observed in the lower region. Interactions between the two halves cause large velocity fluctuations near the top surface. The effects of simplifying the computational domain and approximating the inlet conditions are presented.

Nomenclature

D/Dt

total derivative (=∂/∂t+νj∂/∂xj)

xi

coordinate direction (x, y, or z)

vi

velocity component

v0

kinematic viscosity of fluid

vt

turbulent kinematic viscosity

veff

effective viscosity of turbulent fluid

ρ

density

p

static pressure

t

time

ksgs

sub-grid scale turbulent kinetic energy

Δi

grid size (in x, y and z directions)

Subscript

i, j

direction (x, y, z)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Zhang and B.G. Thomas: Iron Steel Inst. Jpn. Int., 2003, vol. 43 (3), pp. 271–91.Google Scholar
  2. 2.
    W.H. Emling, T.A. Waugaman, S.L. Feldbauer, and A.W. Cramb: Steelmaking Conf. Proc., Chicago, IL, Apr. 13–16, 1997, ISS, Warrendale, PA, 1994, vol. 77, pp. 371–79.Google Scholar
  3. 3.
    B.G. Thomas: in The Making, Shaping and Treating of Steel, 11th ed., Casting Volume, A.W. Cramb, ed., The AISE Steel Foundation, Warrendale, PA, 2003, p. 24.Google Scholar
  4. 4.
    J. Herbertson, Q.L. He, P.J. Flint, and R.B. Mahapatra: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1991, vol. 74, pp. 171–85.Google Scholar
  5. 5.
    B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1262–71.Google Scholar
  6. 6.
    R. Sobolewski and D.J. Hurtuk: 2nd Process Technology Conf. Proc., ISS, Warrendale, PA, 1982, vol. 2, pp. 160–65.Google Scholar
  7. 7.
    D. Gupta and A.K. Lahiri: Steel Res., 1992, vol. 63 (5), pp. 201–04.Google Scholar
  8. 8.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 757–64.CrossRefGoogle Scholar
  9. 9.
    M.B. Assar, P.H. Dauby, and G.D. Lawson: Steelmaking Conf. Proc., ISS, Warrendale, PA, 2000, vol. 83, pp. 397–411.Google Scholar
  10. 10.
    B.G. Thomas, X. Huang, and R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47.Google Scholar
  11. 11.
    B.G. Thomas and L. Zhang: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1181–93.Google Scholar
  12. 12.
    F.M. White: Viscous Fluid Flow, 2nd ed., McGraw-Hill Series in Mechanical Engineering, McGraw-Hill, Boston, MA, 1991, p. 614.Google Scholar
  13. 13.
    S. Sivaramakrishnan: Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, 2000.Google Scholar
  14. 14.
    Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685–702.CrossRefGoogle Scholar
  15. 15.
    E.R.G. Eckert: in Fluid Mechanics Measurements, R.J. Goldstein, ed., Taylor & Francis, Washington, D.C., 1996, pp. 65–114.Google Scholar
  16. 16.
    R.J. Adrian: in Fluid Mechanics Measurements, R.J. Goldstein, ed., Taylor & Francis, Washington, D.C., 1996, pp. 175–299.Google Scholar
  17. 17.
    N.J. Lawson and M.R. Davidson: J. Fluids Eng., 2002, vol. 124 (6), pp. 535–43.CrossRefGoogle Scholar
  18. 18.
    R.J. Adrian: Annu. Rev. Fluid Mech., 1991, vol. 23, pp. 261–304.ADSCrossRefGoogle Scholar
  19. 19.
    I.I. Lemanowicz, R. Gorissen, H.J. Odenthal, and H. Pfeifer: Stahl Eisen., 2000, vol. 120 (9), pp. 85–93.Google Scholar
  20. 20.
    S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, United Kingdom, 2000, p. 771.MATHGoogle Scholar
  21. 21.
    D.E. Hershey, B.G. Thomas, and F.M. Najjar: Int. J. Num. Meth. Fluids, 1993, vol. 17, pp. 23–47.CrossRefGoogle Scholar
  22. 22.
    F.M. Najjar, D.E. Hershey, and B.G. Thomas: 4th FIDAP Users Conf., Evanston, IL, 1991, Fluid Dynamics International, Inc., Evanston, IL, 1991, pp. 1–55.Google Scholar
  23. 23.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.Google Scholar
  24. 24.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84.Google Scholar
  25. 25.
    B.G. Thomas, L.M. Mika, and F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400.Google Scholar
  26. 26.
    M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.Google Scholar
  27. 27.
    X.K. Lan, J.M. Khodadadi, and F. Shen: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 321–32.CrossRefGoogle Scholar
  28. 28.
    X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (304), pp. 197–212.CrossRefGoogle Scholar
  29. 29.
    B.G. Thomas: Mathematical Models of Continuous Casting of Steel Slabs, Report, Continuous Casting Consortium, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.Google Scholar
  30. 30.
    J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: Steelmaking Conf. Proc., Chicago, IL, Mar. 20–23, 1994, ISS, Warrendale, PA, 1994, pp. 381–88.Google Scholar
  31. 31.
    Q. Yuan, S.P. Vanka, and B.G. Thomas: 2nd Int. Symp. on Turbulent and Shear Flow Phenomena, Stockholm, Royal Institute of Technology (KTH), Stockholm, 2001, p. 6.Google Scholar
  32. 32.
    U. Schumann: J. Comput. Phys., 1975, vol. 8, pp. 376–404.CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    K. Horiuti: J. Phys. Soc. Jpn., 1985, vol. 54 (8), pp. 2855–65.CrossRefADSGoogle Scholar
  34. 34.
    H. Schmidt and U. Schumann: J. Fluid Mech., 1989, vol. 200, pp. 511–62.MATHCrossRefADSGoogle Scholar
  35. 35.
    U. Schumann: Theor. Comput. Fluid Dyn., 1991, vol. 2, pp. 279–90.CrossRefGoogle Scholar
  36. 36.
    W.W. Kim and S. Menon: AIAA 97-0210, American Institute of Aeronautics and Astronautics (AIAA), New York, NY, 1997.Google Scholar
  37. 37.
    F.H. Harlow and J.E. Welch: Phys. Fluids, 1965, vol. 8 (112), pp. 2182–89.CrossRefGoogle Scholar
  38. 38.
    J. Crank and P. Nicolson: Proc. Cambridge Phil. Soc., 1947, vol. 43, pp. 50–67.MathSciNetCrossRefGoogle Scholar
  39. 39.
    L.F. Sampine and M.K. Gordon: Computer Solution of Ordinary Differential Equations: the Initial Value Problem, W.H. Freeman & Co., San Francisco, CA, 1975.Google Scholar
  40. 40.
    Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, [Report No. UCRL-MA-137155 DR], 2001.Google Scholar
  41. 41.
    Q. Yuan, B. Zhao, S.P. Vanka, and B.G. Thomas: unpublished research, 2004.Google Scholar
  42. 42.
    R. Madabushi and S.P. Vanka: Phys. Fluids, 1991, vol. 3 (11), pp. 2734–745.CrossRefADSGoogle Scholar
  43. 43.
    H. Tennekes and J.L. Lumley: A First Course in Turbulence, The MIT Press, Cambridge, MA, 1992, pp. 197–222.Google Scholar
  44. 44.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 707–22.CrossRefGoogle Scholar
  45. 45.
    F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.Google Scholar
  46. 46.
    H. Bai: Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2000.Google Scholar
  47. 47.
    A. Cramb, Y. Chung, J. Harman, A. Sharan, and I. Jimbo: Iron Steelmaker, 1997, vol. 24 (3), pp. 77–83.Google Scholar
  48. 48.
    Q. Yuan, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703–14.CrossRefGoogle Scholar
  49. 49.
    S. Sivaramakrishnan, H. Bai, B.G. Thomas, P. Vanka, P. Dauby, and M. Assar: Ironmaking Conf. Proc., ISS, Warrendale, PA, 2000, vol. 59, pp. 541–57.Google Scholar
  50. 50.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 227–33.Google Scholar
  51. 51.
    T. Honeyands and J. Herbertson: 127th ISIJ Meeting, ISIJ, Tokyo, 1994.Google Scholar
  52. 52.
    D. Gupta, S. Chakraborty, and A.K. Lahiri: Iron Steel Inst. Jpn. Int., 1997, vol. 37 (7), pp. 654–58.Google Scholar
  53. 53.
    R. Gass: Inland Steel, Inc., East Chicago, IN, private communication, 1992.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Quan Yuan
    • 1
  • S. P. Vanka
    • 1
  • B. G. Thomas
    • 1
  • Sivaraj Sivaramakrishnan
    • 2
  1. 1.the Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUrbana
  2. 2.the Biomedical Engineering DepartmentNorthwestern UniversityEvanston

Personalised recommendations