Metallurgical and Materials Transactions B

, Volume 35, Issue 5, pp 909–917 | Cite as

Diffusion-coefficient measurements in liquid metallic alloys

  • J. -H. Lee
  • Shan Liu
  • H. Miyahara
  • R. Trivedi


The value of the diffusion coefficient in the liquid (D l ) is generally obtained from the measurement of composition profiles ahead of a quenched planar interface. The experimental results show significant scatter. The main reason for this scatter will be shown to be due to the presence of fluid flow in the liquid. Directional-solidification studies in the Al-Cu system have been carried out to first establish the experimental conditions required for diffusive growth. The composition profiles are then measured to obtain the values of D l for alloy compositions ranging from 4.0 to 24.0 wt pct Cu. The value of D l =2.4×10−3 mm2/s was obtained along the liquidus line, and this result is significantly smaller than the values reported in the literature, which vary from 3.0 to 5.5 × 10−3 mm2/s. It is shown that the scatter in the reported values can be correlated with the diameter of the sample used and, thus, with the fluid flow present in their experiments. Detailed experimental procedures to obtain and verify diffusive-growth conditions are outlined, and appropriate analyses of the data are discussed.


Diffusion Coefficient Material Transaction Effective Diffusion Coefficient Composition Profile Interface Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Niwa, M. Shimoji, S. Kado, Y. Watanabe, and T. Yokokawa: J. Met., 1957, vol. 6, pp. 96–101.Google Scholar
  2. 2.
    T. Ejima, T. Yamamura, N. Uchida, Y. Matsuzaki, and M. Nikaido: J. Jpn. Inst. Met., 1980, vol. 44, p. 316.Google Scholar
  3. 3.
    M.P. Watson and J.D. Hunt: Metall. Trans. A, 1977, vol. 8A, pp. 1793–98.Google Scholar
  4. 4.
    B.N. Bhat: J. Cryst. Growth, 1975, vol. 28, pp. 68–76.CrossRefGoogle Scholar
  5. 5.
    J.D. Verhoeven, E.D. Gibson, and R.I. Griffith: Metall. Trans. B, 1975, vol. 6B, pp. 475–80.CrossRefGoogle Scholar
  6. 6.
    M.D. Rinaldi, R.M. Sharp, and M.C. Flemings: Metall. Trans., 1972, vol. 3, pp. 3133–38.Google Scholar
  7. 7.
    R.M. Jordan and J.D. Hunt: Metall. Trans., 1971, vol. 2, pp. 3401–10.Google Scholar
  8. 8.
    R.M. Sharp and A. Hellawell: J. Cryst. Growth, 1969, vol. 5, pp. 155–61.CrossRefGoogle Scholar
  9. 9.
    D. Froschhammer, H.M. Tensi, H. Zoller, and U. Feurer: Metall. Trans. B, 1980, vol. 11B, pp. 169–71.Google Scholar
  10. 10.
    T. Sato and G. Ohira: J. Cryst. Growth, 1977, vol. 40, pp. 78–89.CrossRefGoogle Scholar
  11. 11.
    T. Sato, K. Ito, and G. Ohira: Trans. Jpn. Inst. Met., 1980, vol. 21, pp. 441–48.Google Scholar
  12. 12.
    J.B. Edwards, E.E. Hucke, and J.J. Martin: Int. Metall. Rev., 1968, vol. 13, pp. 1–28.Google Scholar
  13. 13.
    J.D. Verhoeven: Trans. AIME, 1968, vol. 242, pp. 1937–42.Google Scholar
  14. 14.
    R. Trivedi, S. Liu, P. Mazumder, and E. Simsek: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 309–20.CrossRefGoogle Scholar
  15. 15.
    N.A. El-Mahallawy and M.M. Farag: J. Cryst. Growth, 1978, vol. 44, pp. 252–58.CrossRefGoogle Scholar
  16. 16.
    D.H. Kim and R.A. Brown: J. Cryst. Growth, 1991, vol. 114, pp. 411–34.CrossRefGoogle Scholar
  17. 17.
    R.J. Schaefer and S.R. Coriell: Metall. Trans. A, 1984, vol. 15A, pp. 2109–15.ADSGoogle Scholar
  18. 18.
    R. Trivedi, P. Mazumder, and S.N. Tewari: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3763–75.CrossRefGoogle Scholar
  19. 19.
    Shan Liu, P. Mazumder, and R. Trivedi: J. Cryst. Growth, 2002, vol. 240, pp. 560–68.CrossRefGoogle Scholar
  20. 20.
    R. Trivedi, H. Miyahara, P. Mazumder, and E. Simsek: J. Cryst. Growth, 2001, vol. 222, pp. 365–79.CrossRefGoogle Scholar
  21. 21.
    F.R. Mollard and M.C. Flemings: Trans. AIME, 1967, vol. 239, pp. 1526–46.Google Scholar
  22. 22.
    W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.CrossRefGoogle Scholar
  23. 23.
    S.R. Coriell, R.F. Boisvert, G.B. McFadden, L.N. Brush, and J.J. Favier: J. Cryst. Growth, 1994, vol. 140, pp. 139–47.CrossRefGoogle Scholar
  24. 24.
    B. Caroli, C. Caroli, and L. Ramirez-Piscina: J. Cryst. Growth, 1993, vol. 132, pp. 377–88.CrossRefGoogle Scholar
  25. 25.
    J.A. Warren and J.S. Langer: Phys. Rev. E, 1993, vol. 47, pp. 2702–12.CrossRefADSGoogle Scholar
  26. 26.
    Y. Miyata: J. Jpn. Inst. Met., 1983, vol. 11, pp. 1004–09.Google Scholar
  27. 27.
    H.M. Tensi and C. Mackrodt: Zeit. fur Metall., 1990, vol. 81, pp. 367–72.Google Scholar
  28. 28.
    R. Trivedi and G.M. Pound: J. Appl. Phys., 1967, vol. 39, pp. 3569–76.CrossRefADSGoogle Scholar
  29. 29.
    D.D. Pearson and J.D. Verhoeven: Metall. Trans. A, 1984, vol. 15A, pp. 1037–1145.Google Scholar
  30. 30.
    R. Trivedi and W. Kurz: in Solidification Processing of Eutectic Alloys, D.M. Stefanescu, G.J. Abbaschian, and R.J. Bayuzick, eds., AIME, Warrendale, PA, 1988, pp. 3–34.Google Scholar
  31. 31.
    J.D. Hunt and S.-Z. Lu: in Handbook of Crystal Growth, D.T.J. Hurle, ed., Elsevier Science, New York, NY, 1994, vol. 2, pp. 1113–66.Google Scholar
  32. 32.
    M.H. Burden and J.D. Hunt: J. Cryst. Growth, 1974, vol. 22, pp. 109–116.CrossRefGoogle Scholar
  33. 33.
    S.R. Coriell, M.R. Cordes, W.J. Boettinger, and R.F. Sekerka: J. Cryst. Growth, 1980, vol. 49, pp. 13–28.CrossRefGoogle Scholar
  34. 34.
    C. Le Marek, R. Guerin, and P. Haldenwag: J. Cryst. Growth, 1996, vol. 169, pp. 147–56.CrossRefGoogle Scholar
  35. 35.
    R. Trivedi and Shan Liu: Proc. Int. Conf. on Solidification Science and Processing, B.K. Dhindaw, B.S. Murty, and S. Sen, eds., Science Publishers, Inc., Enfield, NH, USA, 2001, pp. 12–24.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • J. -H. Lee
    • 1
  • Shan Liu
    • 2
  • H. Miyahara
    • 3
  • R. Trivedi
    • 2
    • 4
  1. 1.the Department of Metallurgy and Materials ScienceChangwon UniversityChangwonSouth Korea
  2. 2.United States Department of EnergyAmes LaboratoryAmes
  3. 3.the Materials Science and Engineering DepartmentKyushu UniversityFukuokaJapan
  4. 4.Materials Science and EngineeringIowa State UniversityAmes

Personalised recommendations