Metallurgical and Materials Transactions B

, Volume 35, Issue 5, pp 867–876 | Cite as

Thermodynamic properties and diffusion thermodynamic factors in B2-NiAl

  • L. Bencze
  • D. D. Raj
  • D. Kath
  • L. Singheiser
  • K. Hilpert
  • W. A. Oates


The vaporization of Ni-Al alloys has been investigated in the temperature range 1178 to 1574 K by Knudsen effusion mass spectrometry (KEMS). Thirteen different compositions have been examined in the composition range 38 to 57 at. pct Al. The partial pressures and thermodynamic activities of both Ni and Al have been evaluated both directly from the measured ion intensities for a component in both the alloy and the pure element, I M + /I M + °, and also from the ion intensity ratios of the alloy components, I Al + /I Ni + , by means of a Gibbs-Duhem integration. Reliable partial molar enthalpies and entropies for both components have been obtained by mass spectrometry for this system for the first time. Both properties are found to be nearly temperature independent over the wide temperature range investigated. Two separate component diffusion thermodynamic factors have also been evaluated for the first time by taking into account the large vacancy concentrations in these alloys. The enthalpy and Gibbs energy of mixing of stoichiometric Ni0.5Al0.5 at 1400 K, evaluated using the Gibbs-Duhem ion intensity ratio (GD-IIR) method, are −78.4±1.2 and −49.0 kJ/mol, respectively, with Al(liquid) and completely paramagnetic Ni(fcc, cpm) as reference states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binary Alloy Phase Diagrams, T.B. Massalski, ed., ASM, Metals Park, OH, 1986, vol. 1, p. 140.Google Scholar
  2. 2.
    A. Steiner and K.L. Komarek: Trans. TMS-AIME, 1994, vol. 230, p. 786.Google Scholar
  3. 3.
    N.C. Oforka: Ind. J. Chem., 1986, vol. 25A, p. 1027.Google Scholar
  4. 4.
    J. Wang and H.J. Engell: Steel Res., 1992, vol. 63 (8), p. 320.Google Scholar
  5. 5.
    N.S. Jacobson: Applied Thermodynamic Synthesis Processing Materials (Proc. Symp.), P. Nash and B. Sundman, eds., TMS, Warrendale, PA, 1995, p. 319.Google Scholar
  6. 6.
    K. Rzyman, Z. Moser, R.E. Watson, and M. Weinert: J. Phase Equilibrium, 1998, vol. 19 (2), p. 106.CrossRefGoogle Scholar
  7. 7.
    A. Grün: Ph.D. Thesis, Institut für Metallkunde der Universität Stuttgart, Max-Planck-Institut für Metallforschung Stuttgart, Stuttgart, 1996.Google Scholar
  8. 8.
    V.N. Esk’kov, V.V. Samokhval, and A.A. Vecher: Russ. Metall., 1974, vol. 2, p. 118.Google Scholar
  9. 9.
    E.T. Henig and H.L. Lukas: Z. Metallkd., 1975, vol. 66, p. 98.Google Scholar
  10. 10.
    R.P. Santandrea, R.G. Behrens, and M.A. King: in Reaction Chemistry and High Temperature Ordered Intermetallic Alloys II, Materials Rezearch Society Symposia Proceedings, MRS, Pittsburgh, PA, 1987, vol. 81, p. 467.Google Scholar
  11. 11.
    S.V. Meschel and O.J. Kleppa: in Metallic Alloys: Experimental and Theoretical Perspectives, J.S. Faulkner, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.Google Scholar
  12. 12.
    H.N. Su, P. Nash, and Z.K. Liu: in High Temperature Corrosion and Materials Chemistry IV; E. Opila, B. Pleraggi, P. Hou, D. Shifler, T. Marykyama and E. Wuchina, Proc. The Electrochem. Soc., Pennington, 2003, vol. 16, pp. 489–502.Google Scholar
  13. 13.
    I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman: J. Alloys Compounds, 1997, vol. 247, pp. 20–30.CrossRefGoogle Scholar
  14. 14.
    W. Huang and Y.A. Chang: Intermetallics, 1998, vol. 6, pp. 487–98.CrossRefGoogle Scholar
  15. 15.
    F. Zhang, Y.A. Chang, Y. Du, S.L. Chen, and W.A. Oates: Acta Mater., 2002, vol. 51, p. 207.CrossRefGoogle Scholar
  16. 16.
    P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, YuKh. Vekilov, I.A. Abrikosov, and B. Johansson: Phys. Rev. B, 2000, vol. 61 (9), p. 6003.CrossRefADSGoogle Scholar
  17. 17.
    J. Mayer, M. Fähnle, and B. Meyer: Phys. Rev. B, 1999, vol. 59 (9), p. 6072.CrossRefADSGoogle Scholar
  18. 18.
    L. Bencze, D.D. Raj, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, and K. Hilpert: Metall. Mater. Trans. 2003, vol. 34 A, pp. 2409–19.CrossRefGoogle Scholar
  19. 19.
    K. Hilpert, M. Albers, M. Eckert, and D. Kath: in Structural Intermetallics, Proc. 2nd Int. Symp. on Structural Intermetallics, 1997, M.V. Nathal, R. Dariola, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 63–71.Google Scholar
  20. 20.
    K. Hilpert and K. Ruthardt: Ber. Bunsenges Phys. Chem., 1987, vol. 91, p. 724.Google Scholar
  21. 21.
    J.B. Mann: Proc. Int. Conf. on Mass Spectrometry, Kyoto, K. Ogata and T. Hayakawa, eds., University of Tokyo Press, Tokyo, 1970, p. 814, and personal communication.Google Scholar
  22. 22.
    V.S. Yungman, V.A. Medvedev, I.V. Veits, and G.A. Bergman: IVTAN-THERMO—A Thermodynamic Database and Software System for the Personal Computer, CRC Press and Begel House, Boca Raton, FL, 1993.Google Scholar
  23. 23.
    A. Neckel: in Thermochemistry of Alloys, H. Brodowsky and H. Schaller, eds., Kluwer, London, 1989, p. 221.Google Scholar
  24. 24.
    L. Bencze, K. Hilpert, and W.A. Oates: unpublished research, 2003.Google Scholar
  25. 25.
    H.P. Scholz: Ph.D. Thesis, University of Göttingen, Göttingen, Germany, 2001.Google Scholar
  26. 26.
    L.M. Pike, I.M. Anderson, G.T. Liu, and Y.A. Chang: Acta Mater., 2002, vol. 50, p. 3859.CrossRefGoogle Scholar
  27. 27.
    M. Kogachi and T. Tanahashi: Scripta Mater., 1996, vol. 34, pp. 243–48.CrossRefGoogle Scholar
  28. 28.
    X. Ren and K. Otsuka: Phil. Mag. A, 2000, vol. 80, p. 467.ADSGoogle Scholar
  29. 29.
    Y.A. Chang and J.P. Neumann: Progr. Solid State Chem., 1982, vol. 14, p. 221.CrossRefGoogle Scholar
  30. 30.
    L.S. Darken: Trans. AIME, 1948, vol. 175, p. 184.Google Scholar
  31. 31.
    S. Liubich, S. Dorfman, D. Fuks, and H. Mehrer: Mater. Sci. Eng., 1998, vol. A258, p. 65.Google Scholar
  32. 32.
    S. Dorfman, D. Fuks, and D. Mehrer: Eng. Phys. J., 1998, vol. 33, p. 175.ADSGoogle Scholar
  33. 33.
    T. Ikeda, H. Numaknia, and N. Koina: Acta Mater., 1998, vol. 18, p. 6605.CrossRefGoogle Scholar
  34. 34.
    D. Raj, L. Bencze, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, and K. Hilpert: Intermetallics, 2003, vol. 11, pp. 1119–24.CrossRefGoogle Scholar
  35. 35.
    Z. Qin and G.E. Murch: Phil. Mag. A, 1995, vol. 71, p. 323.Google Scholar
  36. 36.
    A.B. Lidiard: Phil. Mag. A, 1996, vol. 74, p. 43.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • L. Bencze
    • 1
  • D. D. Raj
    • 2
  • D. Kath
    • 3
  • L. Singheiser
    • 3
    • 4
  • K. Hilpert
    • 3
    • 5
  • W. A. Oates
    • 6
  1. 1.the Department of Physical ChemistryRoland Eötvös UniversityBudapestHungary
  2. 2.the Materials Chemistry DivisionIndira Gandhi Centre for Atomic Research (IGCAAR)KalpakkamIndia
  3. 3.the Research Center JülichJülichGermany
  4. 4.Technical University AachenAachenGermany
  5. 5.Technical University DarmastadtDarmstadtGermany
  6. 6.the Institute for Materials ResearchUniversity of SalfordSalfordUnited Kingdom

Personalised recommendations