Advertisement

Metallurgical and Materials Transactions B

, Volume 35, Issue 2, pp 269–275 | Cite as

Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2 (-MgO)-Al2O3 slags

  • Joo Hyun Park
  • Dong Joon Min
  • Hyo Seok Song
Article

Abstract

The viscosity of CaO-SiO2 (-MgO)-Al2O3 slags was measured to clarify the effects of Al2O3 and MgO on the structure and viscous flow of molten slags at high temperatures. Furthermore, the infrared spectra of the quenched slags were analyzed to understand the structural role of Al2O3 in the polymerization or depolymerization of silicate network. The Al2O3 behaves as an amphoteric oxide with the composition of slags; that is, the alumina behaves as a network former up to about 10 mass pct Al2O3, while it acts as a network modifier, in parts, in the composition greater than 10 mass pct Al2O3. This amphoteric role of Al2O3 in the viscous flow of molten slags at the Newtonian flow region was diminished by the coexistence of MgO. The effect of Al2O3 on the viscosity increase can be understood based on an increase in the degree of polymerization (DOP) by the incorporation of the [AlO4]-tetrahedra into the [SiO4]-tetrahedral units, and this was confirmed by the infrared (IR) spectra of the quenched slags. The influence of alumina on the viscosity decrease can be explained on the basis of a decrease in the DOP by the increase in the relative fraction of the [AlO6]-octahedral units. The relative intensity of the IR bands for the [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing Al2O3 content greater than the critical point, i.e., about 10 mass pct in the present systems. The variations of the activity coefficient of slag components with composition indirectly supported those of viscosity and structure of the aluminosilicate melts.

Keywords

Material Transaction Molten Slag Silicate Network Tetrahedral Unit Larnite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.T. Turkdogan and P.M. Bills: Ceram. Bull., 1960, vol. 39, pp. 682–87.Google Scholar
  2. 2.
    P.M. Bills: J. Iron Steel Inst., 1963, vol. 201, pp. 133–40.Google Scholar
  3. 3.
    G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061–72.CrossRefGoogle Scholar
  4. 4.
    R.A. Berryman and I.D. Sommerville: Proc. 3rd Int. Conf. on Molten Slags and Fluxes, Glasgow, June 27–29, 1988, IOM, London, 1989, pp. 202–06.Google Scholar
  5. 5.
    K.C. Mills: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 148–55.Google Scholar
  6. 6.
    N. Iwamoto: Trans. JWRI, 1979, vol. 8, pp. 139–49.Google Scholar
  7. 7.
    B.O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, vol. 66, pp. 678–701.Google Scholar
  8. 8.
    Y. Iguchi, K. Yonezawa, Y. Funaoka, S. Ban-ya, and Y. Nishina: Proc. 3rd Int. Conf. Molten Slags and Fluxes, Glasgow, June 27–29, 1988, IOM, London, 1989, pp. 169–71.Google Scholar
  9. 9.
    L.G. Hwa, S.L. Hwang, and L.C. Liu: J. Non-Cryst. Solids, 1998, vol. 238, pp. 193–97.CrossRefGoogle Scholar
  10. 10.
    G. Jiang and X. Zhang: Proc. 4th Int. Conf. Molten Slags and Fluxes, Sendai, June 8–11, 1992, Iron and Steel Institute of Japan, Sendai, 1992, pp. 28–33.Google Scholar
  11. 11.
    R.G. Duan, K.M. Liang, and S.R. Gu: Mater. Trans., JIM, 1998, vol. 39, pp. 1162–63.Google Scholar
  12. 12.
    L. Zhang and S. Jahanshahi: Proc. 6th Int. Conf. Molten Slags, Fluxes, and Salts, Stockholm-Helsinki, June 12–17, 2000, KTH, Stockholm, CD-ROM paper 008.Google Scholar
  13. 13.
    L. Zhang, S. Sun, and S. Jahanshahi: Proc. 6th Int. Conf. Molten Slags, Fluxes, and Salts, Stockholm-Helsinki, June 12–17, (2000), KTH, Stockholm, CD-ROM Paper 074.Google Scholar
  14. 14.
    B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690–710.Google Scholar
  15. 15.
    D.M. Zirl and S.H. Garofalini: J. Am. Ceram. Soc., 1990, vol. 73, pp. 2848–56.CrossRefGoogle Scholar
  16. 16.
    T. Uchino, T. Sakka, Y. Ogata, and M. Iwasaki: J. Phys. Chem., 1993, vol. 97, pp. 9642–49.CrossRefGoogle Scholar
  17. 17.
    H. Doweidar: J. Non-Cryst. Solids, 1998, vol. 240, pp. 55–65.CrossRefGoogle Scholar
  18. 18.
    F.D. Richardson: Physical Chemistry of Melts in Metallurgy, Academic Press, London, 1974, vol. 1, pp. 106–11.Google Scholar
  19. 19.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723–29.Google Scholar
  20. 20.
    J.H. Park, H.S. Song, and D.J. Min: J. Kor. Inst. Met. and Mater., 2002, vol. 40, pp. 1111–17.Google Scholar
  21. 21.
    J.H. Park, D.J. Min, and H.S. Song: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 38–43.Google Scholar
  22. 22.
    J.H. Park, D.J. Min, and H.S. Song: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 344–51.Google Scholar
  23. 23.
    M. Kowalski, P.J. Spencer, and D. Neuschutz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995, pp. 99–180.Google Scholar
  24. 24.
    K.C. Mills: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995, pp. 349–512.Google Scholar
  25. 25.
    T. Iida and Y. Shiraishi: Handbook of Physico-Chemical Properties at High Temperatures, Iron and Steel Institute of Japan Jpn., Tokyo, 1988, pp. 93–144.Google Scholar
  26. 26.
    J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35, pp. 322–25.CrossRefGoogle Scholar
  27. 27.
    P. Kozakevitch: Rev. Metall., 1960, vol. 57, pp. 149–60.Google Scholar
  28. 28.
    Y.S. Lee, J.H. Park, D.J. Min, S.H. Yi, and W.W. Huh: 61st Iron-making Conf. Proc., Nashville, TN, Mar. 10–13, 2002, ISS-AIME, Warrendale, PA, 2002, pp. 155–65.Google Scholar
  29. 29.
    A. Paul: Chemistry of Glasses, 2nd ed., Chapman & Hall, London, 1990, pp. 16–50.Google Scholar
  30. 30.
    P. Kozakevitch and N. Misra: Rev. Metall., 1966, vol. 63, pp. 471–76.Google Scholar
  31. 31.
    T. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi: J. Non-Cryst. Solids, 1981, vol. 44, pp. 369–78.CrossRefGoogle Scholar
  32. 32.
    P. McMillan: Am. Mineral., 1984, vol. 69, pp. 645–59.Google Scholar
  33. 33.
    R.W. Luth: Am. Mineral., 1988, vol. 73, pp. 297–305.Google Scholar
  34. 34.
    K. Kume, K. Morita, T. Miki, and N. Sano: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 561–66.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • Joo Hyun Park
    • 1
  • Dong Joon Min
    • 2
  • Hyo Seok Song
    • 3
  1. 1.the Stainless Steel Research Group, Technical Research Lab.POSCOPohangKorea
  2. 2.the Department of Metallurgical System EngineeringYonsei UniversitySeoulKorea
  3. 3.the Steelmaking Technology Development Group, Stainless Steel Department, Pohang WorksPOSCOKorea

Personalised recommendations