Metallurgical and Materials Transactions B

, Volume 35, Issue 4, pp 785–803 | Cite as

The development and experimental validation of a numerical model of an induction skull melting furnace

  • V. Bojarevics
  • K. Pericleous
  • R. A. Harding
  • M. Wickins
Article

Abstract

Induction skull melting (ISM) is a widely used process for melting certain alloys that are very reactive in the molten condition, such as those based on Ti, TiAl, and Zr, prior to casting components such as turbine blades, engine valves, turbocharger rotors, and medical prostheses. A major research project has been undertaken with the specific target of developing improved techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (United Kingdom) has developed a dynamic, spectral-method-based computer model of the ISM process in close collaboration with the University of Birmingham (United Kingdom), where extensive melting trials have been undertaken. This article describes in detail the numerical model that encompasses the coupled influences of turbulent flow, heat transfer with phase change, and AC and DC magneto-hydrodynamics (MHD) in a time-varying liquid metal envelope. Associated experimental measurements on Al, Ni, and TiAl alloys have been used to obtain data to validate the model. Measured data include the true root-meansquare (RMS) current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the semi-levitated molten metal. Examples are given of the use of the model in optimizing the design of ISM furnaces by investigating the effects of geometric and operational parameter changes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Noda: Intermetallics, 1998, vol. 6, pp. 709–13.CrossRefGoogle Scholar
  2. 2.
    M. Blum, H.G. Fellmann, H. Franz, G. Farczyk, T. Ruppel, P. Busse, K. Segtrop, and H.F. Laudenberg: Structural Intermetallics 2001, TMS, Warrendale, 2001, pp. 131–35.Google Scholar
  3. 3.
    R.A. Harding and M. Wickins: Mater. Sci. Technol., 2003, Sept.Google Scholar
  4. 4.
    R.A. Harding, M. Wickins, and Y.G. Li: Structural Intermetallics 2001, TMS, Warrendale, 2001, pp. 181–89.Google Scholar
  5. 5.
    V. Bojarevics, G. Djambazov, R.A. Harding, K. Pericleous, and M. Wickins: Proc. 5th Int. Conf. on Fundamental and Applied MHD ‘PAMIR’, Ramatuelle, France, 2002, vol. 2, pp. 77–82.Google Scholar
  6. 6.
    V. Bojarevics, K. Pericleous, R.A. Harding, and M. Wickins: Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, F.A. Warren, M.R. Folly, and M.F.M. Kane, eds., TMS, Warrendale, PA, 2003, pp. 591–98.Google Scholar
  7. 7.
    H. Tadano, K. Kainuma, T. Take, T. Shinokura, and S. Hayashi: Proc. 3rd Int. Symp. Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 2000, pp. 277–82.Google Scholar
  8. 8.
    M. Vogt, F. Bemier, A. Muehlbauer, M. Blum, and G. Jarczyk: Proc. 3rd Int. Symp. Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 2000, pp. 289–94.Google Scholar
  9. 9.
    P. Gillon: Proc. 3rd Int. Symp. Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 2000, pp. 635–40.Google Scholar
  10. 10.
    R.A. Harding M. Wickins V. Bojarevics, and K. Pericleous: in Modeling of Casting, Welding and Advanced Solidification Processes X, D.M. Stefanescu, F.A. Warren, M.R. Folly, and M.F.M. Kane, eds., TMS, Warrendale, PA, 2003, pp. 741–48.Google Scholar
  11. 11.
    Y.-Q. Su, J.-J. Guo, G.-Z. Liu, J. Jia, and H.-S. Ding: Mater. Sci. Technol., 2001, vol. 17, pp. 1434–40.Google Scholar
  12. 12.
    T. Tanaka, K. Kurita, and A. Kuroda: Liquid Metal Flows ASME, 1991, FED-vol. 115, pp. 49–54.Google Scholar
  13. 13.
    M. Enokizono, T. Todaka, I. Matsumoto, and Y. Wada: IEEE Magn., 1993, vol. 29 (6), pp. 2968–70.CrossRefGoogle Scholar
  14. 14.
    E. Baake, A. Muehlbauer, A. Jakowitsch, and W. Andree: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 529–36.Google Scholar
  15. 15.
    P.-R. Cha, Y.-S. Hwang, Y.-J. Oh, S.H. Chung, and J.-K. Yoon: Iron Steel Inst. Jpn. Int., 1996, vol. 9, pp. 1157–65.Google Scholar
  16. 16.
    F. Bernier, M. Vogt, and A. Muehlbauer: Proc. 3rd Int. Symp. Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 2000, pp. 283–88.Google Scholar
  17. 17.
    M. Cross, C. Bailey, K. Pericleous, A. Williams, V. Bojarevics, N. Croft, and G. Taylor: J. of Metals, JOM-e, 2002 Jan., http://www.tms.org/pubs/journals/JOM/0201/Cross/Cross-0201.htmlGoogle Scholar
  18. 18.
    V. Bojarevics, K. Pericleous, and M. Cross: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 179–89.CrossRefGoogle Scholar
  19. 19.
    D.C. Wilcox: Turbulence Modelling for CFD, 2nd ed., DCW Industries, La Canada, CA, 1998.Google Scholar
  20. 20.
    A. Bojarevics, V. Bojarevics, J. Gelfgat, and K. Pericleous: Magnetohydrodynamics, 1999, vol. 35 (3), pp. 258–77.Google Scholar
  21. 21.
    C. Cagran, B. Wilthan, G. Pottlacher, B. Roebuck, M. Wickins, and R.A. Harding: Thermodynamics of Alloys, Rome, 2002.Google Scholar
  22. 22.
    R.A. Harding, R.F. Brooks, G. Pottlacher, and J. Brillo: Int. Symp. Gamma Titanium Aluminides, TMS 132nd Annual Meeting, San Diego, CA, 2003.Google Scholar
  23. 23.
    Datasheet on monoethylene glycol, Ellis & Everard, Middlesbrough, United Kingdom.Google Scholar
  24. 24.
    V. Bojarevics and K. Pericleous: Iron Steel Inst. Jpn. Int., 2003, vol. 43 (6), pp. 890–98.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2004

Authors and Affiliations

  • V. Bojarevics
    • 1
  • K. Pericleous
    • 1
  • R. A. Harding
    • 2
  • M. Wickins
    • 2
  1. 1.the School of Computing and MathematicsUniversity of GreenwichLondonUnited Kingdom
  2. 2.the IRC in Materials ProcessingThe University of BirminghamBirminghamUnited Kingdom

Personalised recommendations