Advertisement

Metallurgical and Materials Transactions B

, Volume 34, Issue 3, pp 287–295 | Cite as

Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2

  • Ryosuke O. Suzuki
  • Katsutoshi Ono
  • Koh Teranuma
Article

Abstract

A concept for calciothermic direct reduction of titanium dioxide in molten CaCl2 is proposed and experimentally tested. This production process consists of a single cell, where both the thermochemical reaction of the calciothermic reduction and the electrochemical reaction for recovery of the reducing agent, Ca, coexist in the same molten CaCl2 bath. A few molar percentages of Ca dissolve in the melt, which gives the media a strong reducing power. Using a carbon anode and a Ti basket-type cathode in which anatase-type TiO2 powder was filled, a metallic titanium sponge containing 2000 ppm oxygen was produced after 10.8 ks at 1173 K in the CaCl2 bath. The optimum concentration of CaO in the molten CaCl2 was 0.5 to 1 mol pct, to shorten the operating time and to achieve a lower oxygen content in Ti.

Keywords

Material Transaction Molten Salt Carbon Precipitation Parasitic Reaction Kroll Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35–47.Google Scholar
  2. 2.
    K. Ono: Titanium Jpn., 2000, vol. 48 (1), pp. 13–15.Google Scholar
  3. 3.
    K. Ono and R.O. Suzuki: Proc. Symp. on Emerging Technologies for Metals Extraction, EPD Congr. 2001, 2001 TMS Annual Meeting, New Orleans, LA, P.R. Taylor, ed., TMS, Warrendale, PA, 2001, pp. 79–88.Google Scholar
  4. 4.
    K. Ono and R.O. Suzuki: Mater. Jpn., 2002, vol. 41 (1), pp. 28–31.Google Scholar
  5. 5.
    K. Ono and R.O. Suzuki: JOM Mem. J. Min. Met. Mater. Soc., 2002, vol. 54 (2), pp. 59–61.Google Scholar
  6. 6.
    K. Ono and R.O. Suzuki: Titanium Jpn., 2002, vol. 50 (2), pp. 105–08.Google Scholar
  7. 7.
    R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.Google Scholar
  8. 8.
    R.O. Suzuki and K. Ono: Proc. 13th Int. Symp. on Molten Salt, H.C. Delong, R.W. Bradshaw, M. Matsunaga, G.R. Stafford, and P.C. Trulove, eds., The Electrochemical Society, Penningston, NJ, 2002, pp. 810–21.Google Scholar
  9. 9.
    A. Roine: HSC Chemistry for Windows, ver. 4.1, Outokump Research Oy, Pori, Finland, 2000.Google Scholar
  10. 10.
    H. Okamoto: Desk Handbook Phase Diagrams for Binary Alloys, ASM INTERNATIONAL, Materials Park, OH, 2000.Google Scholar
  11. 11.
    O. Kubaschewski and W.A. Dench: J. Inst. Met., 1953, vol. 82, pp. 87–91.Google Scholar
  12. 12.
    K. Ono, T.H. Okabe, M. Ogawa, and R.O. Suzuki: Tetsu-to-Hagané, 1990, vol. 76 (4), pp. 568–75.Google Scholar
  13. 13.
    W. Kroll: Z. Anorg. Allgem. Chem., 1937, vol. 234, pp. 42–50.CrossRefGoogle Scholar
  14. 14.
    S. Miyazaki, T. Oishi, and K. Ono: Proc. 5th. World Conf. on Titanium, Munich, Germany, Sept. 10–14, 1984, G. Lütjering, U. Zwicker, and W. Bunk, eds., Deutsche Geselschaft für Metallk., Oberursel, Germany, 1985, pp. 2657–63.Google Scholar
  15. 15.
    K. Ono and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49 (10), pp. 871–75.Google Scholar
  16. 16.
    R.O. Suzuki, M. Ogawa, T. Oishi, and K. Ono: Proc. 6th World Conf. on Titanium 1988, Cannes, France, 1988, Soc. Franc. Metall., Paris, 1989, vol. II, pp. 701–06.Google Scholar
  17. 17.
    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater: Trans. JIM, 1991, vol. 32 (5), pp. 485–88.Google Scholar
  18. 18.
    H. Niiyama, Y. Tajima, F. Tsukihashi, and N. Sano: J. Less-Common Met., 1991, vol. 169, pp. 209–16.CrossRefGoogle Scholar
  19. 19.
    I. Obinata, Y. Takeuchi, and S. Saikawa: Trans. ASM, 1960, vol. 52, pp. 1072–83.Google Scholar
  20. 20.
    P.P. Alexander: U.S. Patent 2.038.402, 1936; U.S. Patent 2.043.363, 1936; and U.S. Patent 2.082.134, 1937.Google Scholar
  21. 21.
    B. Neumann, C. Kröger, and H. Jüttner: Z. Elektrochem., 1935, vol. 41 (10), pp. 725–36.Google Scholar
  22. 22.
    W.D. Threadgill: J. Electrochem. Soc., 1965, vol. 112 (6), pp. 632–33.CrossRefGoogle Scholar
  23. 23.
    D.A. Wenz, I. Johnson, and R.D. Wolson: J. Chem. Eng. Data, 1969, vol. 14 (2), pp. 250–52.CrossRefGoogle Scholar
  24. 24.
    G.S. Perry and L.G. MacDonald: J. Nucl. Mater., 1985, vol. 130, pp. 234–41.CrossRefGoogle Scholar
  25. 25.
    T. Ohshima, R.O. Suzuki, T. Yagura, and K. Ono: Proc. 2000 Powder Metallurgy World Congr., Kyoto, Japan, Nov. 13–18, 2000, K. Kosuge and H. Nagai, eds., Japan Society Powder and Powder Metallurgy, Tokyo, 2001, pp. 532–35.Google Scholar
  26. 26.
    W.Z. Wade and T. Wolf: J. Nucl. Sci. Technol., 1969, vol. 6, pp. 402–07.CrossRefGoogle Scholar
  27. 27.
    R.A. Sharma: J. Met., 1987, vol. 2, pp. 33–37.Google Scholar
  28. 28.
    R.A. Sharma and R.N. Seefruth: J. Electrochem. Soc., 1988, vol. 135 (1), pp. 66–71.CrossRefGoogle Scholar
  29. 29.
    R.A. Sharma and R.N. Seefruth: Metall. Trans. B, 1989, vol. 20B (6), pp. 805–13.Google Scholar
  30. 30.
    Metals Databook, Japan Institute of Metals ed., 2nd ed., Maruzen, Tokyo, 1984, pp. 9, 15, 34, and 68.Google Scholar
  31. 31.
    Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee: Thermal Expansion, Nonmetallic Solid, IFI/Plenum, New York, NY, 1977, pp. 49 and 392–97.Google Scholar
  32. 32.
    D.T. Peterson and J.A. Hinkebein: J. Phys. Chem., 1959, vol. 63, pp. 1360–63.CrossRefGoogle Scholar
  33. 33.
    R.A. Sharma: J. Phys. Chem., 1970, vol. 74 (22), pp. 3896–900.CrossRefGoogle Scholar
  34. 34.
    V. Dosaj, C. Aksaranan, and D.R. Morris: J. Chem. Soc. Faraday Trans., 1975, vol. 71, pp. 1083–98.CrossRefGoogle Scholar
  35. 35.
    H. Fischbach: Steel Res., 1985, vol. 56 (7), pp. 365–68.Google Scholar
  36. 36.
    L.-I. Staffansson and D. Sichen: Scand. J. Metall., 1992, vol. 21, pp. 165–71.Google Scholar
  37. 37.
    A.I. Zaitsev and B.M. Mogutnov: Metall. Mater. Trans., B, 2001, vol. 32B, pp. 305–11.Google Scholar
  38. 38.
    K.M. Axler and G.L. DePoorter: Mater. Sci. Forum, 1991, vol. 73–75, pp. 19–24.CrossRefGoogle Scholar
  39. 39.
    P.D. Ferro, B. Mishra, D.L. Olson, and W.A. Averill: Waste Management, 1997, vol. 17, pp. 451–61.CrossRefGoogle Scholar
  40. 40.
    P.D. Ferro, B. Mishra, D.L. Olson, and W.A. Averill: Trans. Ind. Inst. Met., 1998, vol. 51, pp. 69–77.Google Scholar
  41. 41.
    P.D. Ferro, B. Mishra, and W.A. Averill: in Light Metals 1991, E.L. Rooy, ed., TMS, Warrendale, PA, 1990, pp. 1197–1203.Google Scholar
  42. 42.
    G.J. Kipouros and R.A. Sharma: J. Electrochem. Soc., 1990, vol. 137, pp. 3333–38.CrossRefGoogle Scholar
  43. 43.
    M. Kunitomi: J. Chem. Soc. Jpn., Pure Chem. Sec., 1950, vol. 71, pp. 40–43.Google Scholar
  44. 44.
    R. Lorenz: Trans. Am. Electrochem. Soc., 1904, vol. 6, pp. 160–61.Google Scholar
  45. 45.
    H.-H. Emons and D. Richter: Z. Anorg. Allg. Chem., 1965, vol. 339, pp. 91–98.CrossRefGoogle Scholar
  46. 46.
    A.S. Dworkin, H.R. Bronstein, and M.A. Bredig: J. Phys. Chem., 1966, vol. 70 (7), pp. 2384–88.Google Scholar
  47. 47.
    T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Tetsu-to-Hagané, 1991, vol. 77 (1), pp. 93–99.Google Scholar
  48. 48.
    T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compounds, 1992, vol. 184, pp. 43–56.CrossRefGoogle Scholar
  49. 49.
    T.H. Okabe, M. Nakamura, T. Ueki, T. Oishi, and K. Ono: Bull. Jpn. Inst. Met., 1992, vol. 31 (4), pp. 315–17.Google Scholar
  50. 50.
    T.H. Okabe, T.N. Deura, T. Oishi, K. Ono, and D.R. Sadoway: J. Alloys Compounds, 1996, vol. 237, pp. 150–54.CrossRefGoogle Scholar
  51. 51.
    R.O. Suzuki, M. Aizawa, and K. Ono: J. Alloys Compounds, 1999, vol. 288, pp. 173–82.CrossRefGoogle Scholar
  52. 52.
    T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Trans. B, 1993, vol. 24B, pp. 449–56.Google Scholar
  53. 53.
    K. Hirota, T.H. Okabe, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compounds, 1999, vol. 282, pp. 101–08.CrossRefGoogle Scholar
  54. 54.
    M. Maeda and A. McLean: ISS Trans., 1987, vol. 8, pp. 23–27.Google Scholar
  55. 55.
    M.E. Sibert, Q.H. McKenna, M.A. Steinberg, and E. Wainer: J. Electrochem. Soc., 1955, vol. 102 (5), pp. 252–62.CrossRefGoogle Scholar
  56. 56.
    S. Takeuchi and O. Watanabe: J. Jpn. Inst. Met., 1964, vol. 28 (9), pp. 549–54.Google Scholar
  57. 57.
    T. Oki and H. Inoue: Mem. Fac. Eng., Nagoya Univ., 1967, vol. 19 (1), pp. 164–66.Google Scholar
  58. 58.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRefGoogle Scholar
  59. 59.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32B (6), pp. 1041–52.CrossRefGoogle Scholar
  60. 60.
    D.J. Fray: JOM Mem. J. Min. Met. Mater. Soc., 2001, vol. 53 (10), pp. 26–31.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Ryosuke O. Suzuki
    • 1
  • Katsutoshi Ono
    • 1
  • Koh Teranuma
    • 2
  1. 1.the Department of Energy Science and TechnologyKyoto UniversityKyotoJapan
  2. 2.Research Staff Member with Toho Gas CompanyNagoyaJapan

Personalised recommendations