Advertisement

Metallurgical and Materials Transactions B

, Volume 34, Issue 4, pp 455–473 | Cite as

Modeling of the solidification process in a continuous casting installation for steel slabs

  • Marcial Gonzalez
  • Marcela B. Goldschmit
  • Andrea P. Assanelli
  • Eduardo N. Dvorkin
  • Elena Fernández Berdaguer
Article

Abstract

The development of a computational simulation system for modeling the solidification process in a continuous casting facility for steel slabs is discussed. The system couples a module for solving the direct problem (the calculation of temperatures in the steel strand) with an inverse analysis module that was developed for evaluating the steel/mold heat fluxes from the information provided by thermocouples installed in the continuous casting mold copper plates. In order to cope with the non-uniqueness of the inverse analysis, a priori information on the solution, based on the consideration of the problem physics, is incorporated. The stability of the system predictions are analyzed and the influence of the first trial used to start the evaluation procedure is discussed. An industrial case is analyzed.

Keywords

Mold Material Transaction Continuous Casting Casting Speed Inverse Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Wolf: The Making, Shaping and Treating of Steel Ironmaking Volume, 11th ed., AISE Steel Foundation, in press.Google Scholar
  2. 2.
    B. Lally, LT. Eiegler, and H. Henein: Metall. Trans. B, 1991, vol. 22B, pp. 641–48.Google Scholar
  3. 3.
    B. Lally, L.T. Biegler, and H. Henein: Metall. Trans. B, 1991, vol. 22B, pp. 649–59.Google Scholar
  4. 4.
    E.N. Dvorkin: IACM-Expressions, 2001, Jan., No. 10.Google Scholar
  5. 5.
    M.R. Ridolfi and B.G. Thomas: La Rev. Métall.-CIT, 1994, Apr., pp. 609–20.Google Scholar
  6. 6.
    J.E. Kelly, K.P. Michalek, T.G. O’Connor, B.G. Thomas, and J.A. Dantzig: Metall. Trans. A, 1988, vol. 19A, pp. 2589–602.Google Scholar
  7. 7.
    J. Savage and W.H. Pritchard: J. Iron Steel Inst., 1954, Nov., pp. 29–77.Google Scholar
  8. 8.
    J.E. Lait, J.K. Brimacombe, and F. Weinberg: Ironmaking and Steelmaking (Q.) 1974, vol. 2, pp. 90–97.Google Scholar
  9. 9.
    K. Morgan, R.W. Lewis, and O.C. Zienkiewicz: Int. J. Num. Methods Eng., 1977, vol. 12, pp. 1191–95.CrossRefGoogle Scholar
  10. 10.
    W.D. Rolph and K.J. Bathe: Int. J. Num. Methods Eng., 1982, vol. 18, pp. 119–34.zbMATHCrossRefGoogle Scholar
  11. 11.
    K.K. Tamma and R.R. Namburu: Int. J. Num. Methods Eng., 1990, vol. 30, pp. 803–20.CrossRefGoogle Scholar
  12. 12.
    R. Song, G. Dhatt, and A. Ben Cheikh: Int. J. Num. Methods Eng., 1990, vol. 30, pp. 579–99.zbMATHCrossRefGoogle Scholar
  13. 13.
    C.R. Swaminathan and V.R. Voller: Metall. Trans. B, 1992, vol. 23B, pp. 651–64.Google Scholar
  14. 14.
    L.A. Crivelli and S.R. Idelsohn: Int. J. Num. Methods Eng., 1986, vol. 23, pp. 99–119.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    M.A. Storti, L.A. Crivelli, and S.R. Idelsohn: Int. J. Num. Methods Eng., 1987, vol. 24, pp. 375–92.zbMATHCrossRefGoogle Scholar
  16. 16.
    V.D. Fachinotti, A. Cardona, and A.E. Huespe: Int. J. Num. Methods Eng., 1999, vol. 44, pp. 1863–84.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Miettinen: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 281–95.CrossRefGoogle Scholar
  18. 18.
    R.J. Bathe: Finite Element Porcedures, Prentice-Hall, Upper Saddle River, NJ, 1996.Google Scholar
  19. 19.
    H. Matthies and G. Strang: Int. J. Num. Methods Eng., 1979, vol. 14, pp. 1613–26.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A.F. Mills: Heat Transfer, IRWIN, 1992.Google Scholar
  21. 21.
    D.G. Luenberger: Linear Nonlinear Programming., Addison C Wesley, Reading, MA, 1984.Google Scholar
  22. 22.
    S. Louhenkilpi: Scand. J. Metall., 1994, vol. 23, pp. 9–17.Google Scholar
  23. 23.
    S.G. Hibbins and J.K. Brimacombe: Continuous Casting, vol. 2, Heat Flow, Solidification and Crack Formation, ISS-AIME, Pittsburgh, PA, 1984, pp. 139–51.Google Scholar
  24. 24.
    J.K. Brimacombe, P.K. Agarawal, L.A. Baptista, S.G. Hibbins, and B. Prabhakar: Proc. 69th Steelmaking Conf. Proc., ISS-AIME, Washington, DC, 1986, pp. 109–23.Google Scholar
  25. 25.
    I.V. Samarasekera and J.K. Brimacombe: Proc. 3rd PTD Conf. on Application of Mathematical and Physical Models in the Iron and Steelmaking Industry, ISS, Pittsburgh, PA, 1982, 283–95.Google Scholar
  26. 26.
    B.G. Thomas, G. Li, A. Moita, and D. Habing: ISS Trans., 1998, pp. 125–43.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • Marcial Gonzalez
    • 1
  • Marcela B. Goldschmit
    • 1
  • Andrea P. Assanelli
    • 1
  • Eduardo N. Dvorkin
    • 1
  • Elena Fernández Berdaguer
    • 2
  1. 1.the Center for Industrial ResearchBuenos AiresArgentina
  2. 2.CONICET, Instituto de Calculo, Science SchoolUniversity of Buenos Aires, Ciudad Universitaria-Pabellón 2Buenos AiresArgentina

Personalised recommendations