Metallurgical and Materials Transactions B

, Volume 34, Issue 1, pp 29–36 | Cite as

Laminar-turbulent transition in an electromagnetically levitated droplet

  • R. W. Hyers
  • G. Trapaga
  • B. Abedian
Article

Abstract

During experiments on the MSL-1 (first microgravity science laboratory) mission of the space shuttle (STS-83 and STS-94, April and July 1997), a droplet of palladium-silicon alloy was electromagnetically levitated for viscosity measurements. For the nondeforming droplet, the resultant magnetohydrodynamic (MHD) flow inside the drop can be inferred from motion of impurity particulates on the surface. In the experiments, subsequent to melting, Joule heating produces a continuous reduction of viscosity of the fluid resulting in an acceleration of the flow with time. These observations indicate formation of a pair of co-rotating toroidal flow structures inside the spheroidal drop that undergo flow instabilities. As the fluid temperature rises, the amplitude of the secondary flow increases, and beyond a point, the tracers exhibit noncoherent chaotic motion signifying emergence of turbulence inside the drop. Assuming that the observed laminar-turbulent transition is shear-layer type, the internal structure of the toroidal loops is used to develop a semiempirical correlation for the onset of turbulence. Our calculations indicate that the suggested correlation is in modest agreement with the experimental data, with the transition occurring at a Reynolds number of 600.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Hyers: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.Google Scholar
  2. 2.
    R. Knauf, J. Piller, A. Seidel, M. Stauber, U. Zell, and W. Dreier: VI Int. Symp. on Experimental Methods for Microgravity Materials Science, TMS, Warrendale, PA, 1994, pp. 73–79.Google Scholar
  3. 3.
    A.J. Mestel: J. Fluid Mech., 1982, vol. 117, pp. 27–43.CrossRefGoogle Scholar
  4. 4.
    A.D. Sneyd and H.K. Moffatt: J. Fluid Mech., 1982, vol. 117, pp. 45–70.CrossRefGoogle Scholar
  5. 5.
    N. El-Kaddah and J. Szekely: Metall. Trans. B, 1983, vol. 14B, pp. 401–10.Google Scholar
  6. 6.
    N. El-Kaddah and J. Szekely: Metall. Trans. B, 1984, vol. 15B, pp. 183–86.Google Scholar
  7. 7.
    J.H. Zong, B.Q. Li, and J. Szekely: Acta Astronautica, 1993, vol. 29 (4), pp. 305–11.CrossRefGoogle Scholar
  8. 8.
    B.Q. Li: Int. J. Eng. Sci., 1994, vol. 32 (1), pp. 45–67.CrossRefGoogle Scholar
  9. 9.
    E.M. Schwartz and J. Szekely: VI Int. Symp. Experimental Methods for Microgravity Materials Science, TMS, Warrendale, PA, 1994, pp. 73–79.Google Scholar
  10. 10.
    B.Q. Li: Int. J. Eng. Sci., 1994, vol. 32 (8), pp. 1315–36.CrossRefGoogle Scholar
  11. 11.
    E.M. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.Google Scholar
  12. 12.
    A. Bratz and I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341–59.CrossRefGoogle Scholar
  13. 13.
    U.B. Sathuvalli and Y. Bayazitoglu: IEEE Trans. Mag., 1996, vol. 32 (2), pp. 386–99.CrossRefGoogle Scholar
  14. 14.
    Y. Bayazitoglu, U.B.R. Sathuvalli, P.V.R. Suryanarayana, and G.F. Mitchell: Phys. Fluids, 1996, vol. 8 (2), pp. 370–83.CrossRefGoogle Scholar
  15. 15.
    S.P. Song, B.Q., Li, and J.M. Khodadadi: Int. J. Num. Methods Heat Fluid Flow, 1998, vol. 8 (3), pp. 321–49.CrossRefGoogle Scholar
  16. 16.
    R.W. Hyers, G. Trapaga, and M.C. Flemings: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 23–32.Google Scholar
  17. 17.
    S. Berry, R.W. Hyers, B. Abedian, and L.M. Racz: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 171–78.CrossRefGoogle Scholar
  18. 18.
    W.H. Hofmeister, C.M. Morton, R.J. Bayuzick, and M.B. Robinson: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 75–82.Google Scholar
  19. 19.
    D.M. Matson, W. Löser, and M.C. Flemings: Solidification 1999, TMS, Warrendale, PA, 1999, pp. 99–106.Google Scholar
  20. 20.
    J. Szekely and R. Hyers: “Measurement of the Viscosity of Undercooled Melts under the Conditions of Microgravity and Supporting MHD Calculations,” 2nd Int. Microgravity Laboratory (IML-2) Final Report, NASA/CR-97-206129, NASA, Washington DC, 1995.Google Scholar
  21. 21.
    S. Berry, L.M. Racz, and B. Abedian: Tufts University, Medford, MA 02155, unpublished, 2000.Google Scholar
  22. 22.
    I. Egry, G. Lohöfer, I. Seyhan, S. Schneider, and B. Feuerbacher: Appl. Phys. Lett., 1998, vol. 73 (4), pp. 462–63.CrossRefGoogle Scholar
  23. 23.
    B. Damaschke and K. Samwer: Appl. Phys. Lett., 1999, vol. 75 (15), pp. 2220–23.CrossRefGoogle Scholar
  24. 24.
    B. Damaschke and K. Samwer: University of Augsberg, Augsberg, Germany, private communication, 1998.Google Scholar
  25. 25.
    N.A. Vatolin, O.A. Esin, and E.L. Dubinin: Russ. J. Phys. Chem., 1967, vol. 41 (7), pp. 971–73.Google Scholar
  26. 26.
    T. Ida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988.Google Scholar
  27. 27.
    C.C. Lin: The Theory of Hydrodynamic Stability, Cambridge University Press, Cambridge, United Kingdom, 1955.Google Scholar
  28. 28.
    J. Lighthill: Laminar-Turbulent Transition: JUTAM Symposium, Sendai, Japan September 5–9, 1994, Springer-Verlag, New York, 1995, pp. 1–13.Google Scholar
  29. 29.
    D. Coles: J. Fluid Mech., 1965, vol. 21, pp. 385–425.CrossRefGoogle Scholar
  30. 30.
    K. Nakabayashi: J. Fluid Mech., 1983, vol. 132, pp. 209–30.CrossRefGoogle Scholar
  31. 31.
    C. Andreck, S. Liu, and H. Swinny: J. Fluid Mech., 1996, vol. 164, pp. 155–83.CrossRefGoogle Scholar
  32. 32.
    T.G. Wang, A.V. Anilkumar, C.P. Lee, and K.C. Lin: J. Fluid Mech., 1994, vol. 276, pp. 389–403.CrossRefGoogle Scholar
  33. 33.
    J. Herraro, F.F. Giralt, and J.A.C. Humphery: Phys. Fluids, 1999, vol. 8, pp. 88–96.CrossRefGoogle Scholar
  34. 34.
    V. Shatrov, V. Galindo, and G. Gerbeth: PANIR Conf., Gives, France, Sept. 2000.Google Scholar
  35. 35.
    T.E. Faber: Fluid Dynamics for Physicists, Cambridge University Press, Cambridge, United Kingdom, 1995.Google Scholar
  36. 36.
    A. Bejan and J.L. Lage: J. Heat Transfer, 1975, vol. 18, pp. 1323–29.CrossRefGoogle Scholar
  37. 37.
    P.A. Davidson: J. Fluid Mech., 1992, vol. 245, pp. 669–99.CrossRefGoogle Scholar
  38. 38.
    H.K. Moffat: MHD-Flows and Turbulence II-Proc. 2nd Bat-Sheva Int. Sem., Israel University Press, Jerusalem, 1980, p. 55.Google Scholar
  39. 39.
    Team TEMPUS: Materials and Fluids under Low Gravity, Lecture Notes in Physics 464, Springer, New York, NY, 1996, pp. 233–52.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • R. W. Hyers
    • 1
  • G. Trapaga
    • 2
  • B. Abedian
    • 3
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherst
  2. 2.the Laboratorio de Investigacion en MaterialesCinvestav—Unidad QueretaroQro.Mexico
  3. 3.the Mechanical Engineering DepartmentTufts UniversityMedford

Personalised recommendations