Advertisement

Metallurgical and Materials Transactions B

, Volume 34, Issue 5, pp 727–734 | Cite as

Modeling of ingot development during the start-up phase of direct chill casting

  • A. J. Williams
  • T. N. Croft
  • M. Cross
Article

Abstract

Direct chill (DC) casting is a core primary process in the production of aluminum ingots. However, its operational optimization is still under investigation with regard to a number of features, one of which is the issue of curvature at the base of the ingot. Analysis of these features requires a computational model of the process that accounts for the fluid flow, heat transfer, solidification phase change, and thermomechanical anlaysis. This article describes an integrated approach to the modeling of all the preceding phenomena and their interactions

Keywords

Material Transaction Solid Mechanic Casting Speed Secondary Cool Direct Chill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.G. Fjaer and A. Mo: Metall. Trans. B, 1990, vol. 21B, pp. 1049–61.Google Scholar
  2. 2.
    J.-M. Drezet and M. Rappaz: Metall. Trans. A, 1996, vol. 27A, pp. 3214–25.Google Scholar
  3. 3.
    European Modelling on Aluminium Casting Technologies, Brite-Euram Program BE-1112 EMPACT, 1996–2000, Brussels, Belgium.Google Scholar
  4. 4.
    A. Burghardt, B. Commet, J.-M. Drezet, and H.G. Fjaer: in Modeling of Casting, Welding and Advanced Solidification Processes IX, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker-Verlag, Aachen, Germany, 2000, pp. 25–32.Google Scholar
  5. 5.
    J.-M. Drezet, B. Commet, H.G. Fjaer, and B. Magnin: in Modeling of Casting, Welding and Advanced Solidification Processes IX, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker-Verlag, Aachen, Germany, 2000, pp. 33–40.Google Scholar
  6. 6.
    W. Droste, J.-M. Drezet, G.-U. Grün, and W. Schneider: Int. Conf. on Continuous Casting, 2000, Frankfurt, Germany.CrossRefGoogle Scholar
  7. 7.
    S.C. Flood, L. Katgerman, A.H. Languille, and C.M. Read: in Modeling of Casting and Welding Processes IV, A.F. Gimei and A.J. Abbaschian, eds., TMS, 1988, pp. 553–61.Google Scholar
  8. 8.
    C. Bagnoud and M. Plata: in Modeling of Casting, Welding and Advanced Solidification Processes IX, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker-Verlag, Aachen, Germany, 2000, pp. 753–60.Google Scholar
  9. 9.
    R. Perzyna: Adv. Appl. Mech., 1966, vol. 9, pp. 243–77.CrossRefGoogle Scholar
  10. 10.
    C. Bailey, G.A. Taylor, M. Cross, and P. Chow: J. Comp. Appl. Mathematics, 1999, vol. 103, pp. 3–17.CrossRefGoogle Scholar
  11. 11.
    J.P. Van Doormal and G.D. Raithby: Num. Heat Transfer, 1984, vol. 7, pp. 147–63.Google Scholar
  12. 12.
    C.M. Rhie and W.L. Chow: AIAA J., 1983, vol. 21, pp. 1525–532.Google Scholar
  13. 13.
    G.A. Taylor, C. Bailey, and M. Cross: in Finite Volumes for Complex Applications II: Problems and Perspectives, R.V. Ismeier, F. Benkhaldoun, and D. Hanel, eds., HERMES Science Publications, Paris, 1999, pp. 507–15.Google Scholar
  14. 14.
    G.A. Taylor: Ph.D. Thesis The University of Greenwich, London, 1996.Google Scholar
  15. 15.
    J.-M. Drezet, M. Rappaz, G.U. Grün, and M. Gremaud: Metall. Trans. A, 2000, vol. 31A, pp. 1627–34.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2003

Authors and Affiliations

  • A. J. Williams
    • 1
  • T. N. Croft
    • 1
  • M. Cross
    • 1
  1. 1.the Centre for Numerical Modelling and Process AnalysisUniversity of GreenwichLondonUnited Kingdom

Personalised recommendations