Advertisement

Metallurgical and Materials Transactions B

, Volume 33, Issue 2, pp 285–296 | Cite as

Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations

  • Tariq A. Khraishi
  • Hussein M. Zbib
  • Tomas Diaz de la Rubia
  • Max Victoria
Article

Abstract

When irradiated, metals undergo significant internal damage accumulation and degradation of mechanical properties. Damage takes the form of a high number density of nanosize defect clusters (stacking-fault tetrahedrons (SFTs) or interstitial loops). The alteration of mechanical properties is manifested in a hardening behavior and localized plastic deformation in defect-free channels. This work uses discrete dislocation dynamics (DD) to capture these effects. It sets the framework for the elastic interaction between gliding dislocations and defect clusters and details a scheme for loop unfaulting and absorption into dislocations. Here, it is shown that SFTs represents weaker pinning points for dislocation motion than parent dislocation loops. It is also shown that appreciable yield drop can be attributed to high density of defects decorating the dislocations. Strong obstacles cause dislocations in Cu to continually double cross slip causing the formation of defect-free channels. Finally, the correlation between yield stress increase and defect number density is in excellent agreement with the experiment.

Keywords

Material Transaction Burger Vector Dislocation Loop Defect Cluster Cross Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: J. Nucl. Mater., 2000, vol. 276, pp. 114–22.CrossRefGoogle Scholar
  2. 2.
    Y. Dai: Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1995.Google Scholar
  3. 3.
    A.J.E. Foreman, W.J. Phythian, and C.A. English: Phil. Mag. A, 1992, vol. 66, pp. 671–95.Google Scholar
  4. 4.
    D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, and S.J. Wooding: Nucl. Instrum. Methods Phys. Res. B, 1995, vol. 102, pp. 37–46.CrossRefGoogle Scholar
  5. 5.
    B.D. Wirth, V. Bulatov, and T.D. de la Rubia: J. Nucl. Mater. B, 2000, vol. 283, pp. 773–77.CrossRefGoogle Scholar
  6. 6.
    H. Trinkaus, B.N. Singh, and A.J.E. Foreman: J. Nucl. Mater., 1997, vol. 251, pp. 172–87.CrossRefGoogle Scholar
  7. 7.
    M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T.D. de la Rubia, and J.M. Perlado: J. Nucl. Mater., 2000, vol. 276, pp. 13–25.CrossRefGoogle Scholar
  8. 8.
    Y. Dai, and M. Victoria: Acta Mater., 1997, vol. 45, pp. 3495–3501.CrossRefGoogle Scholar
  9. 9.
    B.N. Singh and S.J. Zinkle: J. Nucl. Mater., 1993, vol. 206, pp. 212–29.CrossRefGoogle Scholar
  10. 10.
    T.D. de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla: Nature, 2000, vol. 406, pp. 871–74.CrossRefGoogle Scholar
  11. 11.
    J.P. Hirth and J. Lothe: Theory of Dislocations, Krieger, Malabar, FL, 1982.Google Scholar
  12. 12.
    T.A. Khraishi, J.P. Hirth, H.M. Zbib, and M.A. Khaleel: Int. J. Eng. Sci., 2000, vol. 38, pp. 251–66.CrossRefGoogle Scholar
  13. 13.
    T.A. Khraishi, H.M. Zbib, J.P. Hirth, and T.D. de la Rubia: Phil. Mag. Lett., 2000, vol. 80, pp. 95–105.CrossRefGoogle Scholar
  14. 14.
    H.M. Zbib, T.D. de la Rubia, M. Rhee, and J.P. Hirth: J. Nucl. Mater., 2000, vol. 276, pp. 154–65.CrossRefGoogle Scholar
  15. 15.
    N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and M. Victoria: Proc. MRS Symp., 1998, vol. 540, pp. 539–48.Google Scholar
  16. 16.
    J.P. Hirth, M. Rhee, and H.M. Zbib: J. Computer-Aided Mater. Des., 1996, vol. 3, pp. 164–66.CrossRefGoogle Scholar
  17. 17.
    H.M. Zbib, M. Rhee, and J.P. Hirth: Int. J. Mech. Sci., 1998, vol. 40, pp. 113–27.CrossRefGoogle Scholar
  18. 18.
    M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T.D. de la Rubia: Modeling Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 467–92.CrossRefGoogle Scholar
  19. 19.
    L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet: Solid State Phenomena, 1992, vols. 23–24, pp. 455–72.CrossRefGoogle Scholar
  20. 20.
    B. Devincre: in Computer Simulations in Materials Science, H.O. Kirchner et al., eds., Kluwer Academic Publishers, Boston, MA, 1996, pp. 309–23.Google Scholar
  21. 21.
    N.M. Ghoniem and L.Z. Sun: Phys. Rev. B, 1999, vol. 60, pp. 128–40.CrossRefGoogle Scholar
  22. 22.
    K.W. Schwarz and F.K. LeGoues: Phys. Rev. Lett., 1997, vol. 79, pp. 1877–80.CrossRefGoogle Scholar
  23. 23.
    B. Devincre: Solid State Comm., 1995, vol. 93, pp. 875–78.CrossRefGoogle Scholar
  24. 24.
    R.O. Scattergood and D.J. Bacon: Phil. Mag., 1975, vol. 31, pp. 179–98.Google Scholar
  25. 25.
    V.V. Bulatov, M. Rhee, and W. Car: Proc. MRS Symp., 1998, vol. 653, pp. Z1.3.1-Z1.3.6.Google Scholar
  26. 26.
    H. Yasin, H.M. Zbib, and M.A. Khaleel: Mater. Sci. Eng. A, 2001, vols. 309–310, pp. 294–99.Google Scholar
  27. 27.
    T.A. Khraishi, H.M. Zbib, and T.D. de la Rubia: Mater. Sci. Eng. A, 2001, vols. 309-310, pp. 283–87.CrossRefGoogle Scholar
  28. 28.
    H.Y. Wang and R. LeSar: Phil. Mag. A, 1995, vol. 71, pp. 149–64.Google Scholar
  29. 29.
    J.P. Hirth, H.M. Zbib, and J. Lothe: in Modeling Simulations Mater. Sci. Eng., 1998, vol. 6, pp. 165–69.CrossRefGoogle Scholar
  30. 30.
    N.M. Ghoniem, B.N. Singh, L.Z. Sun, and T.D. de la Rubia: J. Nucl. Mater., 2000, vol. 276, pp. 166–77.CrossRefGoogle Scholar
  31. 31.
    F. Kroupa: Phil. Mag., 1962, vol. 7, pp. 783–801.Google Scholar
  32. 32.
    Metals Handbook: Desk Edition, H.E. Boyer and T.L. Gall, eds., ASM, Metals Park, OH, 1985.Google Scholar
  33. 33.
    Bill Wolfer: Lawrence Livermore National Laboratory, Livermore, CA, personal communication.Google Scholar
  34. 34.
    D. Hull and D.J. Bacon: Introduction to Dislocations, Pergamon Press, Oxford, United Kingdom, 1984.Google Scholar
  35. 35.
    K. Hanson and J.W. Morris, Jr.: J. Appl. Phys., 1975, vol. 46, pp. 983–90.CrossRefGoogle Scholar
  36. 36.
    J.G. Sevillano, E. Bouchaud, and L.P. Kubin: Scripta Metall. Mater., 1991, vol. 25, pp. 355–60.CrossRefGoogle Scholar
  37. 37.
    R. Tulluri and D.J. Morrison: J. Mater. Eng. Performance, 1997, vol. 6, pp. 454–60.Google Scholar
  38. 38.
    B.N. Singh, A. Horsewell, and P. Toft: J. Nucl. Mater., 1999, vols. 271–272, pp. 97–101.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Tariq A. Khraishi
    • 1
  • Hussein M. Zbib
    • 2
  • Tomas Diaz de la Rubia
    • 3
    • 4
  • Max Victoria
    • 5
  1. 1.the Mechanical Engineering DepartmentUniversity of New MexicoAlbuquerque
  2. 2.the School of Mechanical and Materials EngineeringWashington State UniversityPullman
  3. 3.Chemistry and Materials Science DirectorateUSA
  4. 4.Lawrence Livermore National LaboratoryLivermore
  5. 5.the Ecole Polytechnique de LausanneCRPP-Fusion Technology MaterialsVilligen PSISwitzerland

Personalised recommendations