Advertisement

Metallurgical and Materials Transactions B

, Volume 33, Issue 2, pp 163–172 | Cite as

Simulation of the submerged energy nozzle-mold water model system using laser-optical and computational fluid dynamics methods

  • Hans-Jürgen Odenthal
  • Herbert Pfeifer
  • Ina Lemanowicz
  • Rainer Gorissen
Article

Abstract

The present work describes quantitative digital particle image velocimetry measurements of a full-scale water model of a thin slab mold. Different casting speeds and two submerged entry nozzles with one and two outlet ports have been investigated. The flow pattern of the single-port nozzle shows a counterclockwise-rotating double vortex that is nearly steady-state but leads to high stationary surface waves. The flow jets out of the two-port nozzle oscillate and produce a transient flow pattern with low wave amplitudes. The amplitudes for the one-port nozzle show a linear variation with the volumetric flow rate. The experimental results lead to a good interpretation of the flow phenomena and are used to validate steady-state numerical simulations with the commercial program, CFX, on the basis of the Reynolds equations. To describe anisotropic turbulence effects, the Reynolds stress model (RSM) is used for the flat single-port nozzle and the standard k-ɛ model for the mold flow. The calculated mean velocities and wave amplitudes, predicted from pressure distribution at the water surface, are generally in the consensus of the experimental data.

Keywords

Mold Material Transaction Particle Image Velocimetry Casting Speed Submerged Entry Nozzle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Becker, R. Heine, and M. Walter: Proc. 3rd Eur. Conf. Continuous Casting, Madrid, Spain, Oct. 20–23, 1998, pp. 901–22.Google Scholar
  2. 2.
    M. Brummayer, P. Gittler, and J. Watzinger: 8th VAI Continuous Casting Conf. Proc., Linz, Austria, Voest-Alpine, Industrie-anlagenbau, 2000, pp. 8.1–8.9.Google Scholar
  3. 3.
    D.T. Creech: Master’s Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.Google Scholar
  4. 4.
    B. Grimm, P. Andrzejewski, K. Müller, and K. Tacke: Steel Res., 1999, vol. 70(10), pp. 420–29.Google Scholar
  5. 5.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 227–33.Google Scholar
  6. 6.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 695–97.Google Scholar
  7. 7.
    D. Gupta and A.K. Lahiri: Metall. Mater. Trans., 1996, vol. 27B, pp. 757–64.Google Scholar
  8. 8.
    T. Honeyands and J. Herbertson: Flow Dynamics in Thin Slab Caster Molds, Steel Research, 1995, vol. 66(7), pp. 287–93.Google Scholar
  9. 9.
    X. Huang and B.G. Thomas: Can. Metall. Q., 1998, vol. 37 (3–4), pp. 197–212.CrossRefGoogle Scholar
  10. 10.
    I. Lemanowicz, R. Gorissen, H.-J. Odenthal, and H. Pfeifer: Stahl Eisen., 2000, vol. 9, pp. S.85-S.92.Google Scholar
  11. 11.
    R.M. McDavid and B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 672–85.CrossRefGoogle Scholar
  12. 12.
    F.M. Najjar, B.G. Thomas, and D.E. Hershey: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 749–65.Google Scholar
  13. 13.
    G.A. Panaras, A. Theodorakakos, and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117–26.CrossRefGoogle Scholar
  14. 14.
    J. Schönbeck, C. Caesar, M. Spangenberg, I. Lemanowicz, and C. Maffini: 3rd Eur. Conf. on Continuous Casting, Madrid, Spain, Oct. 20–23, 1998, pp. 345–55.Google Scholar
  15. 15.
    S. Sivaramakrishnan, H. Bai, B.G. Thomas, P. Vanka, P. Dauby, and M. Assar: Ironmaking Conf. Proc., Pittsburgh, PA, 2000, ISS, Warrendale, PA, 2000, vol. 59, pp. 541–57.Google Scholar
  16. 16.
    A. Theodorakakos and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1321–27.CrossRefGoogle Scholar
  17. 17.
    B.G. Thomas, L.M. Mika, and F.M. Najjar: Metall. Trans. B, 1990, vol. 21B, pp. 387–400.Google Scholar
  18. 18.
    B.G. Thomas: The Encyclopedia of Advanced Materials, Pergamon Elsevier Ltd., Oxford, United Kingdom, 2001, vol. 2.Google Scholar
  19. 19.
    K. Wünnenberg, I. Lemanowicz, and J. Dubendorff: Forschungsbericht 60/99, Mannesmann Forschungsinstitut, Duisburg, 1999.Google Scholar
  20. 20.
    D. Xu, W.K. Jones, and J.W. Evans: Processing of Metals and Advanced Materials: Modeling, Design and Properties, B.Q. Li, ed., TMS, Warrendale, PA, 1998, pp. 3–14.Google Scholar
  21. 21.
    R.J. Adrian: Ann. Rev. Fluid Mech., 1991, vol. 23, pp. 261–304.CrossRefGoogle Scholar
  22. 22.
    R. Bölling, H.-J. Odenthal, and H. Pfeifer: Fluent Anwendertreffen 2000, Bingen, Germany, Sept. 18–19, 2000, pp. S.A2.1–S.A2.8.Google Scholar
  23. 23.
    CFX4.2 Solver Manual, AEA Technology, Harwell International Business Centre, Oxfordshire, UK, 1997.Google Scholar
  24. 24.
    H.-J. Odenthal, M. Klaas, and H. Pfeifer: Steel Res., 2000, vol. 71 (6–7), pp. 210–19.Google Scholar
  25. 25.
    H.-J. Odenthal and H. Pfeifer: 7th GALA Fachtagung, Saint-Louis, France, Sept. 27–29, 1999, pp. 50.1–50.6.Google Scholar
  26. 26.
    H. Pfeifer and H.-J. Odenthal: 15th Aachener Stahlkolloquium-Metallurgie von Stahl und Eisen, Aachen, Germany, Apr. 6–7, 2000, pp. 217–232.Google Scholar
  27. 27.
    M. Raffel, C. Willert, and J. Kompenhans: Particle Image Velocimetry, 1st ed., Springer-Verlag, Berlin, 1998.Google Scholar
  28. 28.
    W. Rodi: Turbulence Models and their Application in Hydraulics, A.A. Balkema, Rotterdam/Brookfield, 2nd ed., Int. Assoc. for Hydr. Research, Delft, 1984.Google Scholar
  29. 29.
    C.E. Willert and M. Gharib: Exp. Fluids, 1991, vol. 10, pp. 181–93.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2002

Authors and Affiliations

  • Hans-Jürgen Odenthal
    • 1
  • Herbert Pfeifer
    • 1
  • Ina Lemanowicz
    • 2
  • Rainer Gorissen
    • 3
  1. 1.the Institute for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH AachenAachenGermany
  2. 2.SMS Demag AGDüsseldorfGermany
  3. 3.Vodafone TeleCommerce GmbH System ArchitectureRatingenGermany

Personalised recommendations