Metallurgical and Materials Transactions B

, Volume 32, Issue 3, pp 501–515 | Cite as

Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

  • Y. Wang
  • H. L. Tsai


This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.


Material Transaction Weld Pool Weld Bead Electromagnetic Force Welding Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Szekely: Recent Trends in Welding Science and Technology, TWR’89, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 3–10.Google Scholar
  2. 2.
    K.C. Tsao and C.S. Wu: Welding J., 1988, Mar., pp. 70s–75s.Google Scholar
  3. 3.
    P.G. Jonsson, R.C. Westhoff, and J. Szekely: J. Appl. Phys., 1993, vol. 74, pp. 5997–6006.CrossRefGoogle Scholar
  4. 4.
    C.R. Heiple, P. Burgardt, and J.R. Roper: Modeling of Casting and Welding Process II, TMS-AIME, Warrendale, PA, 1984, pp. 193–205.Google Scholar
  5. 5.
    C.R. Heiple, J.R. Roper, R.T. Stagner, and R.J. Aden: Welding J., 1983, Mar., pp. 72s–77s.Google Scholar
  6. 6.
    G.M. Oreper, T.W. Eagar, and J. Szekely: Welding J., 1983, Nov., pp. 307s–312s.Google Scholar
  7. 7.
    T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Recent Trends in Welding Science and Technology, TWR’89, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 25–30.Google Scholar
  8. 8.
    S. Kou and Y.H. Wang: Welding J., 1986, Mar., pp. 63s–70s.Google Scholar
  9. 9.
    R.T.C. Choo, J. Szekely, and S.A. David: Metall. Trans. B, 1992, vol. 23B, pp. 371–84.Google Scholar
  10. 10.
    P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91.Google Scholar
  11. 11.
    K.S. Yeum, R. Speiser, and D.R. Poirier: Metall. Trans. B, 1989, vol. 20B, pp. 693–703.Google Scholar
  12. 12.
    T.A. Utigard and J.M. Toguri: Metall. Trans. B, 1987, vol. 18B, pp. 695–702.Google Scholar
  13. 13.
    C.R. Heiple and P. Burgardt: Welding J., 1985, June, pp. 159s–162s.Google Scholar
  14. 14.
    P. Burgardt and R.D. Campbell: Key Eng. Mater., 1992, vols. 69–70, pp. 379–416.CrossRefGoogle Scholar
  15. 15.
    T. Zacharia, S.A. David, J.M. Vitek, and T. DebRoy: Welding J., 1989, Dec., pp. 510s–519s.Google Scholar
  16. 16.
    Y. Wang, S. Qi, and H.L. Tsai: University of Missouri-Rolla, Rolla, MO, Metall. Trans. B, 2001, vol. 32B, pp. 145–61.Google Scholar
  17. 17.
    J.W. Kim and S.J. Na: Trans. ASME, J. Eng. Industry, 1994, vol. 116, pp. 78–85.Google Scholar
  18. 18.
    M. Ushio and C.S. Wu: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 509–16.CrossRefGoogle Scholar
  19. 19.
    R.T.C. Choo, K. Mukai, and J.M. Toguri: Welding J., 1992, Apr., pp. 139s–146s.Google Scholar
  20. 20.
    Y. Wang and H.L. Tsai: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 2067–80.CrossRefGoogle Scholar
  21. 21.
    D.B. Kothe, R.C. Mjolsness, and M.D. Torrey: Report No. LA-12007-MS, Los Alamos National Laboratory, Los Alamos, NM, 1991.Google Scholar
  22. 22.
    K.C. Chiang and H.L. Tsai: Int. J. Heat Mass Transfer, 1992, vol. 35, pp. 1763–70.CrossRefGoogle Scholar
  23. 23.
    Q.Z. Diao and H.L. Tsai: Metall. Trans. A, 1993, vol. 24A, pp. 963–73.Google Scholar
  24. 24.
    M.C. Flemings: Solidification Processing, McGraw-Hill, Inc., New York, NY, 1974, pp. 252–58.Google Scholar
  25. 25.
    K. Kubo and R.D. Pehlke: Metall. Trans. B, 1985, vol. 16B, pp. 359–66.Google Scholar
  26. 26.
    P.C. Carman: Trans. Inst. Chem. Eng., 1937, vol. 15, pp. 150–66.Google Scholar
  27. 27.
    G.S. Beavers and E.M. Sparrow: J. Appl. Mech., 1969, vol. 36, pp. 711–14.Google Scholar
  28. 28.
    M.L. Lin and T.W. Eagar: Welding J., 1985, June, pp. 163s–169s.Google Scholar
  29. 29.
    T. Zacharia, S.A. David, and J.M. Vitek: Metall. Trans. B, 1991, vol. 22B, pp. 233–41.Google Scholar
  30. 30.
    H. Schlichting: Boundary-Layer Theory, 6th ed., McGraw-Hill, New York, NY, 1968, ch. 1.Google Scholar
  31. 31.
    S.Y. Lee and S.J. Na: Welding J., 1996, Sept., pp. 269s–279s.Google Scholar
  32. 32.
    Y.S. Kim and T.W. Eagar: Welding J., 1993, June, pp. 269s–278s.Google Scholar
  33. 33.
    J.N. DuPont and A.R. Marder: Welding J., 1995, Dec., pp. 406s–416s.Google Scholar
  34. 34.
    S. Liu and T.A. Siewert: Welding J., 1989, Feb., pp. 52s–58s.Google Scholar
  35. 35.
    J.H. Waszink and L.H.J. Graat: Welding J., 1983, Apr., pp. 108s–116s.Google Scholar
  36. 36.
    R.T.C. Choo, J. Szekely, and R.C. Westhoff: Metall. Trans. B, 1992, vol. 23B, pp. 357–69.Google Scholar
  37. 37.
    W.A. Baeslack III, J.C. Lippold, and W.F. Savage: Welding J., 1979, June, pp. 168s–176s.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2001

Authors and Affiliations

  • Y. Wang
    • 2
  • H. L. Tsai
    • 1
  1. 1.Department of Mechanical and Aerospace Engineering and Engineering MechanicsUniversity of Missouri-RollaRolla
  2. 2.Watlow Heater Technology CenterFenton

Personalised recommendations