Metallurgical and Materials Transactions B

, Volume 31, Issue 1, pp 179–189 | Cite as

Modeling the dynamics of magnetic semilevitation melting

  • V. Bojarevics
  • K. Pericleous
  • M. Cross


In semilevitation melting, a cylindrical metal ingot is melted by a coaxial a.c. induction coil. A watercooled solid base supports the ingot, while the top and side free surface is confined by the magnetic forces as the melting front progresses. The dynamic interplay between gravity, hydrodynamic stress, and the Lorentz force in the fluid determines the instantaneous free surface shape. The coupled nonstationary equations for turbulent flow, heat with phase change, and high-frequency electromagnetic field are solved numerically for the axisymmetric time-dependent domain by a continuous mesh transformation, using a pseudospectral method. Results are obtained for the two actually existing coil configurations and several validation cases.


Free Surface Material Transaction Liquid Metal Magnetic Levitation Coil Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Okress, D. Wroughton, G. Comenetz, P. Brace, and J. Kelly: J. Appl. Phys., 1952, vol. 23 (5), pp. 545–52.CrossRefGoogle Scholar
  2. 2.
    A. Gagnoud and J.P. Brancher: IEEE Trans. Magn., 1985, vol. 21 (6), pp. 2424–27.CrossRefGoogle Scholar
  3. 3.
    C.H. Winstead, P.C. Gazzerro, and J.F. Hoburg: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 275–81.CrossRefGoogle Scholar
  4. 4.
    T.P. Felici: J. Fluid Mech., 1995, vol. 302, pp. 1–28.CrossRefGoogle Scholar
  5. 5.
    E. Schwartz, J. Szekely, O.J. Ilegbusi, J.-H. Zong, and I. Egry: MHD in Process Metallurgy, TMS, Warrendale, PA, 1991, pp. 81–87.Google Scholar
  6. 6.
    J. Szekely and E. Schwartz: Int. Symp. Electromagn. Process. Mater., ISIJ, Nagoya, 1994, pp. 9–14.Google Scholar
  7. 7.
    A. Muhlbauer, A. Muiznieks, and A. Jakowitsch: Industrielle Electrowarme, 1991, vol. B3, pp. 130–41.Google Scholar
  8. 8.
    H. Tadano, M. Fujita, T. Take, K. Nagamatsu, and A. Fukuzawa: IEEE Trans. Magn., 1994, vol. 30(6), pp. 4740–42.CrossRefGoogle Scholar
  9. 9.
    J.R. Bhamidipati and N. El-Kaddah: MHD in Process Metallurgy, TMS, Warrendale, PA, 1991, pp. 69–74.Google Scholar
  10. 10.
    S.P. Song and B.Q. Li: Trans. ASME, J. Heat Transfer, 1998, vol. 120, pp. 492–504Google Scholar
  11. 11.
    J.D. Lavers and M.R. Ahmed: Casting of Near Net Shape Products, TMS, Warrendale PA, 1988, pp. 395–410.Google Scholar
  12. 12.
    A.J. Mestel: J. Fluid Mech., 1982, vol. 117, pp. 27–43.CrossRefGoogle Scholar
  13. 13.
    A.D. Sneyd and H.K. Moffatt: J. Fluid Mech., 1982, vol. 117, pp. 45–70.CrossRefGoogle Scholar
  14. 14.
    H. Fukumoto, Y. Hosokawa, K. Ayata, and M. Morishita: MHD in Process Metallurgy, TMS, Warrendale, PA, 1991, pp. 21–26.Google Scholar
  15. 15.
    R. Kageyama and J.W. Evans: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 919–28.CrossRefGoogle Scholar
  16. 16.
    B.Q. Li: Int. J. Engg. Sci., 1994, vol. 32(8), pp. 1315–36.CrossRefGoogle Scholar
  17. 17.
    W. Rodi: J. Geophys. Res., 1987, vol. 92, (C5), pp. 5305–28.CrossRefGoogle Scholar
  18. 18.
    C.-J. Chen and S.-Y. Jaw: Fundamentals of Turbulence Modeling, Taylor & Francis, Philadelphia, PA, 1998.Google Scholar
  19. 19.
    B.E. Launder and D.B. Spalding: Comp. Meth. Appl. Mech. Eng. 1974, vol. 3, pp. 269–89.CrossRefGoogle Scholar
  20. 20.
    K. Heyerichs and A. Pollard: Int. J. Heat Mass Transfer, 1996, vol. 39 (12), pp. 2385–2400.CrossRefGoogle Scholar
  21. 21.
    P.A. Durbin: AIAA J., 1995, vol. 33(4) pp. 659–64.CrossRefGoogle Scholar
  22. 22.
    J. Meyer, F. Durand, R. Ricou, and C. Vives: Metall. Trans. B, 1984, vol. 15B, pp. 471–78.Google Scholar
  23. 23.
    W.R. Smythe: Static and Dynamic Electricity, 3rd ed., Hemisphere, New York, NY, 1989, p. 408.Google Scholar
  24. 24.
    B.Q. Li: Int. J. Engg. Sci., 1993, vol. 31(2), pp. 201–20.CrossRefGoogle Scholar
  25. 25.
    D.J. Moore and J.C.R. Hunt: Metallurgical Applications of Magnetohydrodynamics, The Metals Society, London, 1984, pp. 93–107.Google Scholar
  26. 26.
    N. El-Kaddah and J. Szekely: J. Fluid Mech., 1983, vol. 133, pp. 37–46.CrossRefGoogle Scholar
  27. 27.
    V. Bojarevics, K. Pericleous, and M. Cross: Modeling of Casting, Welding and Advanced Solidification Processes—VIII, TMS, San Diego, CA, 1998, pp. 1007–14.Google Scholar
  28. 28.
    V. Bojarevics, K. Pericleous, and M. Cross: Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows, Kluwer Academic Publishers, Dordrecht, 1998, pp. 345–57.Google Scholar
  29. 29.
    V.R. Voller, M. Cross, and N.C. Markatos: Int. J. Numer. Meth. Eng., 1987, vol. 24, pp. 271–84.CrossRefGoogle Scholar
  30. 30.
    S.H. Seyedein and M. Hasan: Int. J. Heat Mass Transfer, 1997, vol. 40, pp. 4405–23.CrossRefGoogle Scholar
  31. 31.
    J.R. Bhamidipati: Ph.D. Thesis, University of Alabama, Tuscaloosa, AL, 1995.Google Scholar
  32. 32.
    C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang: Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988.Google Scholar
  33. 33.
    J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, New York, NY, 1965.Google Scholar
  34. 34.
    J.P. Boyd: Chebyshev & Fourier Spectral Methods, Springer, New York, NY, 1989.Google Scholar
  35. 35.
    F.N. Fritsch and J. Butland: SIAM J. Sci. Stat. Comput., 1984, vol 5, pp. 300–04.CrossRefGoogle Scholar
  36. 36.
    R.A. Harding and X.R. Zhu: Proc. Int. Congr. Electromagnetic Processing of Materials, Centre Francais de l’Electricite, Service Diffusion de la Documentation, Paris, 1997, vol. 1, pp. 165–70.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • V. Bojarevics
    • 1
  • K. Pericleous
    • 1
  • M. Cross
    • 1
  1. 1.the School of MathematicsUniversity of GreenwichLondonUnited Kingdom

Personalised recommendations