Advertisement

Metallurgical and Materials Transactions B

, Volume 31, Issue 5, pp 921–925 | Cite as

The surface tensions and foaming behavior of melts in the system CaO-FeO-SiO2

  • David Skupien
  • D. R. Gaskell
Article

Abstract

The surface tensions of melts in the system CaO-FeO-SiO2 have been measured in the temperature range 1573 to 1708 K using the hollow cylinder technique. The iron oxide content was maintained constant at 30 wt pct and the CaO/SiO2 wt pct ratio was varied in the range 0.43 to 1.5. Surface tension increases with increasing basicity and with decreasing temperature. The data were used to test published correlations of slag foaming indexes with surface tension and viscosity. Foam life increases with increasing viscosity and with decreasing surface tension.

Keywords

Foam Surface Tension Material Transaction Iron Oxide Content Surface Tension Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kozakevitch: J. Met., 1969, pp. 57–68.Google Scholar
  2. 2.
    J.W. Gibbs: The Collected Works of J.W. Gibbs, vol. I, Thermodynamics, Yale University Press, New Haven, CT, 1948, p. 300.Google Scholar
  3. 3.
    W. Harkins and F. Jordan: J. Am. Chem. Soc., 1930, vol. 52, pp. 1751–72.CrossRefGoogle Scholar
  4. 4.
    Y. Kawai, K. Mori, H. Shiraishi, and N. Yamada: Tetsu-to-Hagané, 1976, vol. 62, pp 53–61.Google Scholar
  5. 5.
    P. Kozakevitch and A. Konoenko: J. Phys. Chem., 1940, vol. 14, p. 1118.Google Scholar
  6. 6.
    J. Swisher and C. McCabe: Trans. AIME, 1964, vol. 230, pp. 1669–75.Google Scholar
  7. 7.
    C. Cooper and J.A. Kitchener: J. Iron Steel Inst., 1959, vol. 193, pp. 48–51.Google Scholar
  8. 8.
    J.F. Elliott: W.O. Philbrook Memorial Symp. Conf. Proc., Iron and Steel Society, Warrendale, PA, 1988, pp. 3–5.Google Scholar
  9. 9.
    P. Bhattacharyya and D.R. Gaskell: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 139–41.CrossRefGoogle Scholar
  10. 10.
    C. Cooper and J.A. Kitchener: J. Iron Steel Inst., 1959, vol. 193, pp. 48–59.Google Scholar
  11. 11.
    J. Swisher and C. McCabe: Trans. AIME, 1964, vol. 230, pp. 1669–75.Google Scholar
  12. 12.
    S. Hara and O. Ogino: The Reinhardt Schuhmann Int. Symp. on Innovative Technology and Reactor Design in Extraction Metallurgy, TMS-AIME, Warrendale, PA, 1986, pp. 639–47.Google Scholar
  13. 13.
    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 509–14.Google Scholar
  14. 14.
    K. Ito and R.J. Fruehan: Metall. Trans. B, 1989, vol. 20B, pp. 515–21.Google Scholar
  15. 15.
    R. Jiang and R.J. Fruehan: Metall. Trans. B, 1991, vol. 22B, pp. 481–89.Google Scholar
  16. 16.
    G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061–72.CrossRefGoogle Scholar
  17. 17.
    P. Rontgen: Z. Erz. Metallhuttenwes., 1960, vol. 13, pp. 363–73.Google Scholar
  18. 18.
    Y.E. Lee and D.R. Gaskell: Metall. Trans., 1974, vol. 5, pp. 853–60.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • David Skupien
    • 1
  • D. R. Gaskell
    • 2
  1. 1.Detroit Diesel CorporationDetroit
  2. 2.the School of Materials EngineeringPurdue UniversityWest Lafayette

Personalised recommendations