Advertisement

Metallurgical and Materials Transactions A

, Volume 30, Issue 10, pp 2611–2618 | Cite as

The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys

  • C. H. Caceres
  • C. J. Davidson
  • J. R. Griffiths
  • Q. G. Wang
Article

Abstract

The microstructure and tensile behavior of two Al-7 pct Si-Mg casting alloys, with magnesium contents of 0.4 and 0.7 pct, have been studied. Different microstructures were produced by varying the solidification rate and by modification with strontium. An extraction technique was used to determine the maximum size of the eutectic silicon flakes and particles. The eutectic Si particles in the unmodified alloys and, to a lesser extent, in the Sr-modified alloys are larger in the alloys with higher Mg content. Large Fe-rich π-phase (Al9FeMg3Si5) particles are formed in the 0.7 pct Mg alloys together with some smaller β-phase (Al5FeSi) plates; in contrast, only β-phase plates are observed in the 0.4 pct Mg alloys. The yield stress increases with the Mg content, although, at 0.7 pct Mg, it is less than expected, possibly because some of the Mg is lost to π-phase intermetallics. The tensile ductility is less in the higher Mg alloys, especially in the Sr-modified alloys, compared with the lower Mg alloys. The loss of ductility of the unmodified alloy seems to be caused by the larger Si particles, while the presence of large π-phase intermetallic particles accounts for the loss in ductility of the Sr-modified alloy.

Keywords

Material Transaction Tensile Ductility Unmodified Alloy Dendrite Cell Size Area Equivalent Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Mater. Sci. Forum, 1996, vols. 217–222, pp. 713–8.Google Scholar
  2. 2.
    H.W. Zandbergen, S.J. Andersen, and J. Jansen: Science, 1997, vol. 277, pp. 1221–5.CrossRefGoogle Scholar
  3. 3.
    R.C. Harris, S. Lipson, and H. Rosenthal: AFS Trans., 1956, vol. 64, pp. 470–81.Google Scholar
  4. 4.
    S.F. Frederick and W.A. Bailey: Trans. TMS-AIME, 1968, vol. 242, pp. 2063–7.Google Scholar
  5. 5.
    R. Sinfield and D.A. Harris: J. Aus. Inst. Met., 1975, vol. 20, pp. 44–8.Google Scholar
  6. 6.
    J.A. Eady and D.M. Smith: Mater. Forum, 1986, vol. 9, pp. 217–23.Google Scholar
  7. 7.
    S. Shivkumar, C. Keller, and D. Apelian: AFS Trans., 1990, vol. 98, pp. 905–10.Google Scholar
  8. 8.
    K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189–203.Google Scholar
  9. 9.
    S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Eng., 1992, vol. A151, pp. 1–10.Google Scholar
  10. 10.
    A.T. Joenoes and J.E. Gruzleski: Cast Met., 1991, vol. 4, pp. 62–71.Google Scholar
  11. 11.
    B. Closset and J.E. Gruzleski: Metall. Trans. A, 1982, vol. 13A, pp. 945–51.Google Scholar
  12. 12.
    G. Gustafsson, T. Thorvaldsson, and G.L. Dunlop: Metall. Trans. A, 1986, vol. 17A, pp. 45–52.Google Scholar
  13. 13.
    G.E. Nagel, J.P. Mouret, and J. Dubruelh: AFS Trans., 1983, vol. 91, pp. 157–60.Google Scholar
  14. 14.
    D.A. Granger, R.R. Sawtell, and M.M. Kersker: AFS Trans., 1984, vol. 92, pp. 579–86.Google Scholar
  15. 15.
    G.K. Sigworth, S. Shivkumar, and D. Apelian: AFS Trans., 1989, vol. 97, pp. 811–24.Google Scholar
  16. 16.
    Y.H. Tan, S.L. Lee, and Y.L. Lin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1195–205.Google Scholar
  17. 17.
    C. Verdu, H. Cercueil, S. Communal, P. Sainfort, and R. Fougeres: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1449–54.Google Scholar
  18. 18.
    Q.G. Wang, C.H. Caceres, and J.R. Griffiths: AFS Trans., 1998, vol. 106, pp. 131–6.Google Scholar
  19. 19.
    Q.G. Wang and C.H. Caceres: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 106–9.Google Scholar
  20. 20.
    Q.G. Wang and C.H. Caceres: Mater. Sci. Forum, 1996, vol. 242, pp. 159–64.CrossRefGoogle Scholar
  21. 21.
    C.H. Caceres and B.I. Selling: Mater. Sci. Eng., 1996, vol. A220, pp. 109–16.Google Scholar
  22. 22.
    R.E. Spear and G.R. Gardner: AFS Trans., 1963, vol. 71, pp. 209–15.Google Scholar
  23. 23.
    D.L. McLellan: AFS Trans., 1982, vol. 90, pp. 173–91.Google Scholar
  24. 24.
    C.H. Caceres, C.J. Davidson, and J.R. Griffiths: Mater. Sci. Eng., 1995, vol. A197, pp. 171–9.Google Scholar
  25. 25.
    C.H. Caceres and Q.G. Wang: Int. J. Cast Met. Res., 1996, vol. 9, pp. 157–62.Google Scholar
  26. 26.
    J.C. Jaquet: 2nd Int. Conf. on Molten Aluminium Processing, AFS, Des Plaines, IL, 1989, pp. 2.1–2.36Google Scholar
  27. 27.
    C.H. Caceres and Q.G. Wang: AFS Trans., 1996, vol. 104, pp. 1039–43.Google Scholar
  28. 28.
    M.S. Misra and K.J. Oswalt: AFS Trans., 1982, vol. 90, pp. 1–10.Google Scholar
  29. 29.
    S. Shivkumar, S. Ricci, Jr., B. Steenhoff, D. Apelian, and G.K. Sigworth: AFS Trans., 1989, vol. 97, pp. 791–810.Google Scholar
  30. 30.
    D.S. Saunders, B.A. Parker, and J.R. Griffiths: J. Aus. Inst. Met., 1975, vol. 20, pp. 33–8.Google Scholar
  31. 31.
    R.W. Coade, S.M. Nugent, D.S. Saunders, J.R. Griffiths, and B.A. Parker: Proc. Annual Conf. of the Australasian Institute of Metals, Australasian Institute of Metals, Melbourne, 1977, pp. 6B-1–6B-2.Google Scholar
  32. 32.
    Q.G. Wang, C.H. Caceres, and J.R. Griffiths: Proc. 9th Int. Conf. on Fracture (ICF9), B.L. Karihaloo, Y.W. Mai, M.I. Ripley, and R.O. Ritchie, eds., Elsevier, London, 1997, pp. 2511–8.Google Scholar
  33. 33.
    Q.G. Wang and C.H. Caceres: Mater. Sci. Eng., 1998, vol. A241, pp. 72–82.Google Scholar
  34. 34.
    C.H. Caceres and J.R. Griffiths: Acta Mater., 1996, vol. 44, pp. 25–33.CrossRefGoogle Scholar
  35. 35.
    K.J. Oswalt and M.S. Misra: AFS Trans., 1980, vol. 88, pp. 845–62.Google Scholar
  36. 36.
    R.S. Chappell, T.A. Hughes, and G. Pollard: Metallography, 1970, vol. 3, pp. 235–7.CrossRefGoogle Scholar
  37. 37.
    E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.Google Scholar
  38. 38.
    C.J. Simensen and T.L. Rolfsen: Z. Metallkd., 1997, vol. 88, pp. 142–6.Google Scholar
  39. 39.
    J.M. Dowling and J.W. Martin: Acta Metall., 1976, vol. 24, pp. 1147–53.CrossRefGoogle Scholar
  40. 40.
    A. Kelly: Phil. Mag., 1958, vol. 3, pp. 1472–4.Google Scholar
  41. 41.
    C.H. Caceres, C.J. Davidson, J.R. Griffiths, L.M. Hogan, and Q.G. Wang: Mater. Forum, 1997, vol. 21, pp. 27–43.Google Scholar
  42. 42.
    Aerospace Structural Metals Handbook, W. F. Brown, H. Mindlin, and C.Y. Ho, eds., CINDAS/USAF CRDA Handbooks Operation, Purdue University, West Lafayette, IN, 1959 (1995 revision, Figure 1.0918).Google Scholar
  43. 43.
    C.H. Caceres, J.R. Griffiths, and P. Reiner: Acta Mater., 1996, vol. 44, pp. 15–23.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • C. H. Caceres
    • 1
  • C. J. Davidson
    • 2
  • J. R. Griffiths
    • 2
  • Q. G. Wang
    • 3
  1. 1.the CRC for Alloy and Solidification Technology (CAST), Department of Mining, Minerals and Materials EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.CSIRO Manufacturing Science and TechnologyKenmoreAustralia
  3. 3.Metal Processing InstituteSPIWorcester

Personalised recommendations