Advertisement

Metallurgical and Materials Transactions A

, Volume 30, Issue 5, pp 1223–1233 | Cite as

Influence of grain size and stacking-fault energy on deformation twinning in fcc metals

  • Ehab El-Danaf
  • Surya R. Kalidindi
  • Roger D. Doherty
Article

Abstract

This article investigates the microstructural variables influencing the stress required to produce deformation twins in polycrystalline fcc metals. Classical studies on fcc single crystals have concluded that the deformation-twinning stress has a parabolic dependence on the stacking-fault energy (SFE) of the metal. In this article, new data are presented, indicating that the SFE has only an indirect effect on the twinning stress. The results show that the dislocation density and the homogeneous slip length are the most relevant microstructural variables that directly influence the twinning stress in the polycrystal. A new criterion for the initiation of deformation twinning in polycrystalline fcc metals at low homologous temperatures has been proposed as (σ tw σ 0)/G=C(d/b)A, where σ tw is the deformation twinning stress, σ 0 is the initial yield strength, G is the shear modulus, d is the average homogeneous slip length, b is the magnitude of the Burger’s vector, and C and A are constants determined to have values of 0.0004 and −0.89, respectively. The role of the SFE was observed to be critical in building the necessary dislocation density while maintaining relatively large homogeneous slip lengths.

Keywords

Material Transaction Slip Length Deformation Twinning Deformation Marking Brass Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Trans. A, 1997, vol. 2A, pp. 1781–95.CrossRefGoogle Scholar
  2. 2.
    J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.CrossRefGoogle Scholar
  3. 3.
    L. Rémy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.Google Scholar
  4. 4.
    J.A. Venables: J. Phys. Chem. Solids, 1964, vol. 25, pp. 693–700.CrossRefGoogle Scholar
  5. 5.
    S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.CrossRefGoogle Scholar
  6. 6.
    L. Rémy and A. Pineau: Mater. Sci. Eng., 1976, vol. 26, pp. 123–32.CrossRefGoogle Scholar
  7. 7.
    B.W. Oh, S.J. Chao, Y.G. Kim, Y.P. Kim, and S.H. Hong: Mater. Sci. Eng. A, 1995, vol. 197A, pp. 147–56.Google Scholar
  8. 8.
    E. Romhanji, V. Milenkovic, and D. Drobjnak: Z. Metallkd., 1992, vol. 2, pp. 110–14.Google Scholar
  9. 9.
    D. Lahaie, J.D. Embury, M.M. Chadwick, and G.T. Gray III: Scripta Metall., 1992, vol. 27, pp. 139–42.CrossRefGoogle Scholar
  10. 10.
    S.G. Song and G.T. Gray III: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2665–76.Google Scholar
  11. 11.
    G.T. Gray III: Encyclopedia Mater. Sci., 1997, Pergamon Press, Oxford, suppl. vol. 2, pp. 859–65.Google Scholar
  12. 12.
    Y. Inokuti and B. Cantor: Acta Metall., 1982, vol. 30, pp. 343–56.CrossRefGoogle Scholar
  13. 13.
    Y. Inokuti and B. Cantor: Scripta Metall., 1976, vol. 10, pp. 655–59.CrossRefGoogle Scholar
  14. 14.
    S.R. Kalidindi, A. Abusafieh, and E. El-Danaf: Exp. Mech., 1997, vol. 37, pp. 213–18.CrossRefGoogle Scholar
  15. 15.
    H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.CrossRefGoogle Scholar
  16. 16.
    A. Howie and P.R. Swarnn: Phil. Mag., 1961, vol. 6, pp. 1215–26.Google Scholar
  17. 17.
    A.W. Thompson and M.I. Baskes: Acta. Metall., 1973, vol. 21, pp. 301–08.Google Scholar
  18. 18.
    S. Asgari: PhD thesis, Drexel University, 1997.Google Scholar
  19. 19.
    A.W. Thompson, M.I. Baskes, and W.F. Flanagan: Acta Metall., 1973, vol. 21, pp. 1017–28.CrossRefGoogle Scholar
  20. 20.
    H. Dong and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 1025–29.Google Scholar
  21. 21.
    A.D. Rollet, U.F. Kocks, J.D. Embury, M.G. Stout, and R.D. Doherty: in Strength of Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1988, vol. 11, p. 265.Google Scholar
  22. 22.
    A.S. Argon and P. Hassen: Acta Metall. Mater., 1993, vol. 41, pp. 3289–3306.CrossRefGoogle Scholar
  23. 23.
    M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.Google Scholar
  24. 24.
    T.L. Johnston and C.E. Feltner: Metall. Trans., 1970, vol. 1, pp. 1161–67.Google Scholar
  25. 25.
    G.T. Gray III: Acta Metall., 1988, vol. 36, pp. 1745–54.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Ehab El-Danaf
    • 1
  • Surya R. Kalidindi
    • 1
  • Roger D. Doherty
    • 1
  1. 1.the Materials Engineering DepartmentDrexel UniversityPhiladelphia

Personalised recommendations