Metallurgical and Materials Transactions A

, Volume 30, Issue 9, pp 2429–2437 | Cite as

Microstructural evolution of 6063 aluminum during friction-stir welding

  • Yutaka S. Sato
  • Hiroyuki Kokawa
  • Masatoshi Enomoto
  • Shigetoshi Jogan


The microstructural distribution associated with a hardness profile in a friction-stir-welded, age-hardenable 6063 aluminum alloy has been characterized by transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). The friction-stir process produces a softened region in the 6063 Al weld. Frictional heating and plastic flow during friction-stir welding create fine recrystallized grains in the weld zone and recovered grains in the thermomechanically affected zone. The hardness profile depends greatly on the precipitate distribution and only slightly on the grain size. The softened region is characterized by dissolution and growth of the precipitates during the welding. Simulated weld thermal cycles with different peak temperatures have shown that the precipitates are dissolved at temperatures higher than 675 K and that the density of the strengthening precipitate was reduced by thermal cycles lower than 675 K. A comparison between the thermal cycles and isothermal aging has suggested precipitation sequences in the softened region during friction-stir welding.


Welding Material Transaction Thermal Cycle Weld Zone Isothermal Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.J. Dawes: Weld. Met. Fabrication, 1995, vol. 63, pp. 13–16.Google Scholar
  2. 2.
    C.J. Dawes and W.M. Thomas: Weld. J., 1996, vol. 75, pp. 41–45.Google Scholar
  3. 3.
    C.J. Dawes: Proc. 6th Int. Symp. of JWS, JWS, Nagoya, Japan, 1996, pp. 711–18.Google Scholar
  4. 4.
    S. Kallee, D. Richardson, and I. Henderson: Schweissen Schneiden (Welding Cutting), 1997, vol. 49, pp. 904–909 (E178–180).Google Scholar
  5. 5.
    K.-E. Knipstrom and B. Pekkari: Weld. J., 1997, vol. 76, pp. 55–57.Google Scholar
  6. 6.
    J. Hagstrom and R. Sandstrom: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 199–208.Google Scholar
  7. 7.
    M. Enomoto: J. Light Met. Welding Construction, 1998, vol. 36, pp. 25–29.Google Scholar
  8. 8.
    W.M. Thomas and E.D. Nicholas: Mater. Des., 1997, vol. 18 (4–6), pp. 269–73.Google Scholar
  9. 9.
    M.B. Ellis and M. Strangwood: Mater. Sci. Technol., 1996, vol. 12, pp. 970–77.Google Scholar
  10. 10.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton: Scripta Mater., 1997, vol. 36, pp. 69–75.CrossRefGoogle Scholar
  11. 11.
    M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.CrossRefGoogle Scholar
  12. 12.
    G. Liu, L.E. Murr, C.-S. Niou, J.C. McClure, and F.R. Vega: Scripta Mater., 1997, vol. 37, pp. 355–61.CrossRefGoogle Scholar
  13. 13.
    L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci., 1998, vol. 33, pp. 1243–51.CrossRefGoogle Scholar
  14. 14.
    L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1801–03.CrossRefGoogle Scholar
  15. 15.
    O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, and J. C. McClure: Scripta Mater., 1998, vol. 38, pp. 703–08.CrossRefGoogle Scholar
  16. 16.
    D. Marchive and R. Deschamps: Aluminium, 1979, vol. 55, p. 37.Google Scholar
  17. 17.
    D. L. Zhang and L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983–91.CrossRefGoogle Scholar
  18. 18.
    T. Sheppard: Mater. Sci. Technol., 1988, vol. 4, pp. 635–43.Google Scholar
  19. 19.
    B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.Google Scholar
  20. 20.
    D.J. Dingley and D.P. Field: Mater. Sci. Technol., 1997, vol. 13, pp. 69–78.Google Scholar
  21. 21.
    Welding Handbook, 8th ed., AWS, Miami, FL, 1996, vol. 3, p. 12.Google Scholar
  22. 22.
    M.H. Jacobs: Phil. Mag., 1972, vol. 26, pp. 1–13.Google Scholar
  23. 23.
    H. Westengen and N. Ryum: Z. Metallkd., 1979, vol. 70, pp. 528–35.Google Scholar
  24. 24.
    I. Dutta and S.M. Allen: J. Mater. Sci. Lett., 1991, vol. 10, pp. 323–26.CrossRefGoogle Scholar
  25. 25.
    D.H. Bratland, Ø. Grong, H. Shercliff, O.R. Myhr, and S. Tjøtta: Acta Mater., 1997, vol. 45, pp. 1–22.CrossRefGoogle Scholar
  26. 26.
    H.W.L. Philips: J. Inst. Met., 1946, vol. 72, p. 151.Google Scholar
  27. 27.
    K. Ohori: J. Jpn Inst. Light Met., 1988, vol. 38, pp. 748–63.Google Scholar
  28. 28.
    C.E. Cross and G.R. Edwards: in Treatise on Materials Science and Technology, vol. 31, Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevam and R.D. Doherty, eds., Academic Press, New York, NY, 1989, pp. 53–54.Google Scholar
  29. 29.
    N. Maruyama, R. Uemori, N. Hashimoto, M. Saga, and M. Kikuchi: Scripta Mater., 1997, vol. 36, pp. 89–93.CrossRefGoogle Scholar
  30. 30.
    S. Ceresara, E. Dirusso, P. Fiorini, and A. Giarda: Mater. Sci. Eng., 1969–70, vol. 5, pp. 220–27.Google Scholar
  31. 31.
    K. Matsuda, H. Gamada, K. Fujii, T. Yoshida, T. Sato, A. Kamio, and S. Ikeno: J. Jpn. Inst. Light Met., 1997, vol. 47, pp. 493–99.CrossRefGoogle Scholar
  32. 32.
    G.A. Edwards, K. Stiller, and G.L. Dunlop: Appl. Surf. Sci., 1994, vols. 76–77, pp. 219–25.CrossRefGoogle Scholar
  33. 33.
    K. Matsuda, S. Ikeno, and S. Tada: J. Jpn Inst. Met., 1993, vol. 57, pp. 1107–13.Google Scholar
  34. 34.
    K. Matsuda, S. Tada, and S. Ikeno: J. Jpn Inst. Met., 1994, vol. 58, pp. 252–59.Google Scholar
  35. 35.
    K. Matsuda, S. Tada, S. Ikeno, T. Sato, and A. Kamio: Scripta Metall. Mater., 1995, vol. 32, pp. 1175–80.CrossRefGoogle Scholar
  36. 36.
    K. Matsuda, S. Ikeno, T. Sato, and A. Kamio: Scripta Mater., 1996, vol. 34, pp. 1797–1802.CrossRefGoogle Scholar
  37. 37.
    K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1161–67.CrossRefGoogle Scholar
  38. 38.
    K. Matsuda, T. Yoshida, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: J. Jpn Inst. Met., 1998, vol. 62, pp. 133–39.Google Scholar
  39. 39.
    K. Matsuda, T. Kawabata, T. Naoi, Y. Uetani, S. Rengakuji, T. Sato, A. Kamio, and S. Ikeno: J. Jpn. Inst. Met., 1998, vol. 62, pp. 827–33.Google Scholar
  40. 40.
    G. Thomas: J. Inst. Met., 1961–62, vol. 90, pp. 57–63.Google Scholar
  41. 41.
    J.P. Lynch, L.M. Brown, and M.H. Jacobs: Acta Metall., 1982, vol. 30, pp. 1389–95.CrossRefGoogle Scholar
  42. 42.
    D. Ludecke: Z. Metallkd., 1986, vol. 77, pp. 278–83.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Yutaka S. Sato
    • 1
  • Hiroyuki Kokawa
    • 1
  • Masatoshi Enomoto
    • 2
  • Shigetoshi Jogan
    • 3
  1. 1.the Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.the SAD ProjectShowa Aluminum CorporationOyama City, TochigiJapan
  3. 3.the R&D DepartmentShowa Aluminum CorporationSakai City, OsakaJapan

Personalised recommendations