Metallurgical and Materials Transactions A

, Volume 30, Issue 11, pp 2905–2913 | Cite as

The effect of water vapor on the oxidation of alloys that develop alumina scales for protection

  • Ramkumar Janakiraman
  • G. H. Meier
  • F. S. Pettit


Cyclic oxidation tests have been performed at 1100 °C in wet and dry air on a number of alloys and coatings that form α-Al2O3 scales upon exposure to oxidizing conditions. The alloys that were investigated included PWA 1480, PWA 1484, CMSX 4, diffusion aluminide coatings on PWA 1480 and PWA 1484, and Co-24Cr-10.5Al-0.3Y. In cases where some cracking and spalling of the alumina scales occurred in dry air, the presence of water vapor caused the degradation rate to be increased by a factor of 2. When no cracking or spalling of the alumina occurred in dry air, as was the case for low sulfur alloys, water vapor had no effect on the oxidation behavior. It is proposed that water vapor causes stress corrosion cracking at the Al2O3-alloy interface during cyclic oxidation.


Water Vapor Material Transaction Oxide Scale Cyclic Oxidation Alumina Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rahmel and J. Tobolski: Corr. Sci., 1965, vol. 5, pp. 333–46.CrossRefGoogle Scholar
  2. 2.
    C.W. Tuck, M. Odgers, and K. Sachs: Corr. Sci., 1969, vol. 9, pp. 271–85.CrossRefGoogle Scholar
  3. 3.
    R.L. McCarron and J.W. Schulz: Proc. Symp. on High Temperature Gas-Metal Reactions in Mixed Environments, AIME, New York, NY, 1973, p. 360.Google Scholar
  4. 4.
    H. Bouaouine, F. Armanet, and C. Coddet: Int. Congr. on Metallic Corrosion, Toronto, 1989, pp. 379–81.Google Scholar
  5. 5.
    I. Kvernes, M. Oliveira, and P. Kofstad: Corr. Sci., 1977, vol. 17, pp. 237–52.CrossRefGoogle Scholar
  6. 6.
    R. Kremer and W. Auer: Mater. Corr. 1997, vol. 48, p. 35.CrossRefGoogle Scholar
  7. 7.
    E.A. Irene: J. Electrochem. Soc., 1974, vol. 121, pp. 1614–16.Google Scholar
  8. 8.
    J.F. Cullinan: Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, 1989.Google Scholar
  9. 9.
    A.J. Sedriks: Corrosion of Stainless Steels, 2nd ed., John Wiley and Sons, Inc., New York, NY, 1996.Google Scholar
  10. 10.
    P. Kofstad: in Microscopy of Oxidation, M.J. Bennett and G.W. Lorimer, eds., The Institute of Metals, London, 1991, p. 2.Google Scholar
  11. 11.
    H. Buscail, S. Heinze, P. Dufour, and J.P. Larpin: Oxid. Met., 1997, vol. 47, pp. 445–64.CrossRefGoogle Scholar
  12. 12.
    J.L. Smialek: Metall. Trans. A, 1991, vol. 22A, pp. 739–52.Google Scholar
  13. 13.
    D.R. Sigler: Oxid. Met., 1993, vol. 40, pp. 555–83.CrossRefGoogle Scholar
  14. 14.
    M.A. Smith, W.E. Frazier, and B.A. Pregger: Mater. Sci. Eng., 1995, vol. A203, pp. 388–98.Google Scholar
  15. 15.
    M. Levy, P. Farrell, and F. Pettit: Corrosion, 1986, vol. 42, pp. 708–17.Google Scholar
  16. 16.
    J.G. Smeggil, A.W. Funkenbusch, and N.S. Bornstein: Metall. Trans. A, 1986, vol. 17A, pp. 923–32.Google Scholar
  17. 17.
    J.L. Smialek and B.K. Tubbs: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 427–436.Google Scholar
  18. 18.
    G.H. Meier, F.S. Pettit, and J.L. Smialek: Werkstoffe Korrosion, 1995, vol. 46, pp. 232–40.CrossRefGoogle Scholar
  19. 19.
    J.L. Smialek: in Oxidation of Metals and Associated Mass Transport, M.A. Dazananda, S.J. Rothman, and W.E. King, eds., TMS—AIME, Warrendale, PA, 1987, pp. 297–313.Google Scholar
  20. 20.
    H.E. Evans and M.P. Taylor: Proc. 24th Int. Conf. on Metallurgical Coatings, San Diego, CA, Apr. 21–25, 1997, Surface & Coatings Technology, 1997, vol. 94–95, pp. 27–33.Google Scholar
  21. 21.
    F.S Pettit: Trans. Tms-AIME, 1967, vol. 239, pp. 1296–1305.Google Scholar
  22. 22.
    C. Sarioglu, J.R. Blachere, F.S. Pettit, and G.H. Meier: in Microscopy of Oxidation 3, S.B. Newcomb and J.A. Little, eds., The Institute of Materials, London, 1997, p. 41.Google Scholar
  23. 23.
    I.E. Reimanis, B.J. Dalgleish, M. Brahy, M. Ruhle, and A.G. Evans: Acta Metall., 1990, vol. 38, pp. 2645–52.CrossRefGoogle Scholar
  24. 24.
    S.M. Weiderhorn: J. Am. Ceram. Soc., 1967, vol. 50, pp. 407–14.CrossRefGoogle Scholar
  25. 25.
    S.M. Weiderhorn: Int. J. Fract. Mech., 1968, vol. 4, pp. 171–77.Google Scholar
  26. 26.
    W.B. Hillig and R.J. Charles: in High Strength Materials, V.F. Zackay, ed., John Wiley & Sons, New York, NY, 1965.Google Scholar
  27. 27.
    T.A. Michalski and S.W. Freiman: J. Am. Ceram. Soc., 1983, vol. 66, pp. 284–88.CrossRefGoogle Scholar
  28. 28.
    T.A. Michalski, S.W. Freiman, and B. Bunker: Am. Ceram. Soc. Bull., 1982, vol. 61, p. 414.Google Scholar
  29. 29.
    R.H. Doremues: J. Phys. Chem., 1971, vol. 75, pp 3147–52.CrossRefGoogle Scholar
  30. 30.
    R.J. Bruckner: J. Non-Crystalline Solids, 1971, vol. 5, pp. 177–83.CrossRefGoogle Scholar
  31. 31.
    S.Y. Hong, A.B. Anderson, and J.F. Smialek: Surface Sci., 1990, vol. 230, pp. 175–83.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1999

Authors and Affiliations

  • Ramkumar Janakiraman
    • 1
  • G. H. Meier
    • 2
  • F. S. Pettit
    • 2
  1. 1.Donsco IncorporationWrightsville
  2. 2.the Materials Science and Engineering DepartmentUniversity of PittsburghPittsburgh

Personalised recommendations