Metallurgical and Materials Transactions A

, Volume 29, Issue 5, pp 1431–1439 | Cite as

A strain energy-based approach to the low-cycle fatigue damage mechanism in a high-strength spring steel

  • D. M. Li
  • W. J. Nam
  • C. S. Lee


Low-cycle fatigue tests were conducted using smooth, cylindrical specimens under a strain-controlled, fully reversed condition for a high-strength spring steel heat treated to different strength levels. The variation of the cyclic deformation substructure was observed with a transmission electron microscope (TEM). The results indicate that the average plastic strain energy dissipated per cycle (ΔW ps ) is an important parameter upon which a consistent evaluation of the cyclic stress-strain, the strain-life, and the plastic strain energy-life relationships is made feasible. Furthermore, the total plastic strain energy dissipated prior to failure (W f ), determined on the basis of ΔW ps , is proven to be another important parameter, from the variation of which the extent of local damage accumulation can be evaluated. Confirmed by the results of TEM observations, a strain localization-induced damage mechanism is proposed and discussed.


Material Transaction Strain Amplitude Slip Band Plastic Strain Energy Deformation Substructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Ong: Int. J. Fatigue, 1993, vol. 15, pp. 213–19.CrossRefGoogle Scholar
  2. 2.
    H.J. Roven and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1735–54.CrossRefGoogle Scholar
  3. 3.
    K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 2473–86.Google Scholar
  4. 4.
    L.F. Coffin, Jr.: Trans. ASME, 1954, vol. 76, pp. 931–50.Google Scholar
  5. 5.
    S.S. Manson: Heat Transfer Symposium, University of Michigan Engineering Research Institute, Ann Arbor, MI, 1953, pp. 9–75.Google Scholar
  6. 6.
    L. Bairstow: Phil. Trans. R. Soc. London, Ser. A, 1910, vol. 210, pp. 35–55.Google Scholar
  7. 7.
    M.A. Miner: Trans. ASME, 1945, vol. 67, p. A159.Google Scholar
  8. 8.
    N. Enomoto: Proc. ASTM, 1955, vol. 55, p. 903.Google Scholar
  9. 9.
    R.F. Hanstock: Proc. Phys. Soc., 1947, vol. 59, pp. 275–87.CrossRefGoogle Scholar
  10. 10.
    P.P. Benham and H. Ford: J. Mech. Eng. Sci., 1961, vol. 3, pp. 119–32.Google Scholar
  11. 11.
    JoDean Morrow: Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, ASTM, Philadelphia, PA, 1965, pp. 45–87.Google Scholar
  12. 12.
    G.R. Halford: J. Mater., 1966, vol. 1, pp. 3–18.Google Scholar
  13. 13.
    D. Lefebvre and F. Ellyin: Int. J. Fatigue, 1984, vol. 6, pp. 9–15.CrossRefGoogle Scholar
  14. 14.
    S.R. Mediratta, V. Ramaswamy, and P. Rama Rao: Int. J. Fatigue, 1988, vol. 10, pp. 13–19.CrossRefGoogle Scholar
  15. 15.
    K.M. Golos: Mater. Sci. Eng. A, 1989, vol. A111, pp. 63–69.Google Scholar
  16. 16.
    Y.W. Chung and W.J. Lee: Mater. Sci. Eng. A, 1994, vol. A186, pp. 121–28.Google Scholar
  17. 17.
    N. Eswara Prasad, A.G. Paradkar, G. Malakondaiah, and V.V. Kutumbarao: Scripta Metall. Mater., 1994, vol. 30, pp. 1497–1502.CrossRefGoogle Scholar
  18. 18.
    S.G.S. Raman and K.A. Padmanabhan: Int. J. Fatigue, 1995, vol. 17, pp. 271–77.CrossRefGoogle Scholar
  19. 19.
    W.H. Kim and C. Laird: Acta Metall., 1978, vol. 26, pp. 777–87.CrossRefGoogle Scholar
  20. 20.
    K. Pohl, P. Mayr, and E. Marcherauch: Scripta Metall., 1980, vol. 14, pp. 1167–69.CrossRefGoogle Scholar
  21. 21.
    H. Mughrabi, K. Herz, and X. Stark: Int. J. Fatigue, 1981, vol. 17, pp. 193–220.Google Scholar
  22. 22.
    C. Laird, P. Charsley, and H. Mughrabi: Mater. Sci. Eng., 1986, vol. 81, pp. 433–50.CrossRefGoogle Scholar
  23. 23.
    P. Neuman: Mater. Sci. Eng., 1986, vol. 81, pp. 465–75.CrossRefGoogle Scholar
  24. 24.
    Y. Liu: Mater. Sci. Eng. A, 1989, vol. A113, pp. 237–44.Google Scholar
  25. 25.
    J.A. Bannantine, J.J. Comer, and J.L. Handrock: Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Engewood Cliffs, NJ, 1990.Google Scholar
  26. 26.
    S. Matsuoka, M. Yuyama, and S. Nishijima: Trans. Jpn. Soc. Mech. Eng., 1986, vol. A52, pp. 1831–38.Google Scholar
  27. 27.
    R.W. Landgraf: Fatigue and Microstructures, ASM, Metals Park, OH, 1978, pp. 439–66.Google Scholar
  28. 28.
    O.H. Basquin: Am. Soc. Test. Mater. Proc., 1910, vol. 10, pp. 625–30.Google Scholar
  29. 29.
    P.N. Thielen, M.E. Fine, and R.A. Fournelle: Acta Metall., 1976, vol. 24, pp. 1–10.CrossRefGoogle Scholar
  30. 30.
    W.J. Plumbridge and N. Knee: Mater. Sci. Technol., 1985, vol. 1, pp. 577–82.Google Scholar
  31. 31.
    L.F. van Swam, R.M. Pelloux, and N.J. Grant: Metall. Trans., 1975, vol. 6, pp. 45–54.Google Scholar
  32. 32.
    A.C. Pickard and J.F. Knott: Low Cycle Fatigue, ASTM STP 942, ASTM, Philadelphia, PA, 1988, pp. 58–76.Google Scholar
  33. 33.
    S.G.S. Raman and K.A. Padmanabhan: Int. J. Fatigue, 1992, vol. 14, pp. 295–304.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • D. M. Li
    • 1
  • W. J. Nam
    • 2
  • C. S. Lee
    • 1
  1. 1.the Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea
  2. 2.the Technical Research LaboratoryPohang Iron and Steel Co. Ltd.PohangKorea

Personalised recommendations