Metallurgical and Materials Transactions A

, Volume 31, Issue 7, pp 1733–1740 | Cite as

Creep properties of Ni3(AlTiTa) γ′ phase single crystals

  • K. Glock
  • U. Glatzel
  • C. Knobloch


In this investigation, we determine the anisotropy of the medium- and high-temperature creep behavior of single crystals of the γ′ phase in the stationary creep regime. Influence of orientation on activation energy for intermediate temperature creep (1123 K) and stress exponents at intermediate and high temperatures (1253 and 1423 K) could not be detected. On the other hand, absolute strain rates show a variation by a factor of up to 3, with the highest strain rate for [001] and lowest for [111] oriented crystals.


Material Transaction Creep Rate Creep Test Creep Behavior Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.P. Pope and S.S. Ezz: Int. Met. Rev., 1984, vol. 29, pp. 136–67.Google Scholar
  2. 2.
    N.S. Stoloff: Int. Mater. Rev., 1989, vol. 34, pp. 153–83.Google Scholar
  3. 3.
    B.H. Kear and H.G.F. Wilsdorf: Trans. AIME, 1962, vol. 224, pp. 382–86.Google Scholar
  4. 4.
    P. Veyssière, D.L. Guan, and J. Rabier: Phil. Mag. A, 1984, vol. 49A, pp. 45–54.Google Scholar
  5. 5.
    M.V. Nathal, J.O. Diaz, and R.V. Miner: Mater. Res. Soc. Symp. Proc., 1989, vol. 133, pp. 269–74.Google Scholar
  6. 6.
    C. Knobloch, V. Saß, D. Siebörger, and U. Glatzel: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 237–41.Google Scholar
  7. 7.
    P.H. Thornton, R.G. Davies, and T.L. Johnston: Metall. Trans., 1970, vol. 1, pp. 207–18.Google Scholar
  8. 8.
    K.J. Hemker and W.D. Nix: Mater. Res. Soc. Symp. Proc., 1989, vol. 133, pp. 481–86.Google Scholar
  9. 9.
    K.J. Hemker, M.J. Mills, and W.D. Nix: J. Mater. Res., 1992, vol. 7, pp. 2059–69.Google Scholar
  10. 10.
    S. Miura, J.A. Horton, C.T. Liu, T. Suzuki, and Y. Mishima: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 769–73.Google Scholar
  11. 11.
    C. Knobloch, V.N. Toloraia, and U. Glatzel: Scripta Mater., 1997, vol. 37, pp. 1491–98.CrossRefGoogle Scholar
  12. 12.
    Z.-L. Peng, S. Miura, and Y. Mishima: Mater. Trans., JIM, 1997, vol. 38, pp. 653–55.Google Scholar
  13. 13.
    C.B. Jiang, S. Patu, Q.Z. Lei, C.X. Shi: Phil. Mag. Lett., 1998, vol. 78, pp. 1–8.CrossRefGoogle Scholar
  14. 14.
    T. Link, C. Knobloch, and U. Glatzel: Scripta Mater., 1999, vol. 40, pp. 85–90.Google Scholar
  15. 15.
    K.J. Hemker and W.D. Nix: Metall. Trans. A, 1993, vol. 24A, pp. 335–41.Google Scholar
  16. 16.
    J. Wolfenstine, H.K. Kim, and J.C. Earthman: Mater. Sci. Eng., 1994, vols. A192–A193, pp. 811–16.Google Scholar
  17. 17.
    D.M. Shah and A. Cetel: Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 273–82.Google Scholar
  18. 18.
    M. Wen and S. Li: Acta Mater., 1998, vol. 46, pp. 4351–55.CrossRefGoogle Scholar
  19. 19.
    S. Kohlhammer, M. Fähnle, and G. Schoeck: Scripta Mater., 1998, vol. 39, pp. 359–63.CrossRefGoogle Scholar
  20. 20.
    B.H. Kear, A.F. Giamei, G.R. Leverant, and J.M. Oblak: Scripta Metall., 1969, vol. 3, pp. 455–60.CrossRefGoogle Scholar
  21. 21.
    H. Brehm and U. Glatzel: Int. J. Plasticity, 1998, vol. 15, pp. 285–98.CrossRefGoogle Scholar
  22. 22.
    H. Brehm and U. Glatzel: Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., 1999, pp. 359–68.Google Scholar
  23. 23.
    D.M. Shah: Scripta Metall., 1983, vol. 17, pp. 997–1002.CrossRefGoogle Scholar
  24. 24.
    V. Sass, U. Glatzel, and M. Feller-Kniepmeier: Acta Mater., 1997, vol. 44, pp. 1967–77.CrossRefGoogle Scholar
  25. 25.
    D. Siebörger and U. Glatzel: Acta Mater., 1999, vol. 47, pp. 397–406.CrossRefGoogle Scholar
  26. 26.
    O.D. Sherby, T.A. Trozera, and J.E. Dorn: Proc. ASTM, 1956, vol. 56, pp. 789–806.Google Scholar
  27. 27.
    O.D. Sherby: Acta Metall., 1962, vol. 10, pp. 135–47.CrossRefGoogle Scholar
  28. 28.
    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, England, 1982.Google Scholar
  29. 29.
    V. Sass, D. Siebörger, C. Knobloch, and U. Glatzel: 7th Int. Conf. on Creep Fracture Engineering Materials Structures, J.C. Earthman and F.A. Mohamed, eds., 1997, pp. 687–96.Google Scholar
  30. 30.
    C. Knobloch, K. Glock, and U. Glatzel: High Temperature Ordered Intermetallic Alloys VIII, E.P. George, M.J. Mills, and M. Yamaguchi, eds., 1998, pp. KK9.11.1–KK9.11.5.Google Scholar
  31. 31.
    M.H. Yoo: Acta Metall., 1987, vol. 35, pp. 1559–69.CrossRefGoogle Scholar
  32. 32.
    C. Knobloch: Ph.D. Thesis, Technische Universität Berlin, Berlin, 2000.Google Scholar
  33. 33.
    P.M. Hazzledine, M.H. Yoo, and Y.Q. Sun: Acta Metall., 1989, vol. 37, pp. 3235–44.CrossRefGoogle Scholar
  34. 34.
    K.J. Hemker, M.J. Mills, and W.D. Nix: Acta Metall. Mater., 1991, vol. 39, pp. 1901–13.CrossRefGoogle Scholar
  35. 35.
    P.M. Hazzledine and J.H. Scneibel: Scripta Metall., 1989, vol. 23, pp. 1887–92.CrossRefGoogle Scholar
  36. 36.
    J.H. Schneibel and P.M. Hazzledine: Ordered Intermetallics—Physical Metallurgy and Mechanical Behavior, NATO ASI Series, vol. 273, C.T. Liu, R.W. Cahn, G. Sauthoff, eds., Kluwer Academic Publishers, Dordrecht, 1992, pp. 565–81.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 2000

Authors and Affiliations

  • K. Glock
    • 1
  • U. Glatzel
    • 1
  • C. Knobloch
    • 2
  1. 1.the Metallische WerkstoffeUniversität JenaJenaGermany
  2. 2.the Institut für Metallische WerkstoffeTechnische Universität BerlinBerlinGermany

Personalised recommendations