Metallurgical and Materials Transactions A

, Volume 29, Issue 1, pp 377–385 | Cite as

Dynamic analysis of unidirectional pressure infiltration of porous preforms by pure metals

  • Dhiman K. Biswas
  • Jorge E. Gatica
  • Surendra N. Tewari


Unidirectional pressure infiltration of porous preforms by molten metals is investigated numerically. A phenomenological model to describe fluid flow and transport phenomena during infiltration of fibrous preforms by a metal is formulated. The model describes the dynamics of the infiltration process, the temperature distribution, and solid fraction distribution. The numerical results are compared against classical asymptotic analyses and experimental results. This comparison shows that end effects may become important and render asymptotic results unreliable for realistic samples. Fiber volume fraction and initial temperature appear as the factors most strongly influencing infiltration. Metal superheating affects not only the length of the two-phase zone but also the solid fraction distribution in the two-phase zone. The effect of constant applied pressure, although significant on the infiltration velocity, is almost negligible on the two-phase zone length and on solid fraction distribution. When the initial preform temperature is below the metal melting point, and constant pressure is applied under adiabatic conditions, the flow ceases when sufficient solidification occurs to obstruct it. A comparison with literature experiments proves the model to be an efficient predictive tool in the analysis of infiltration processes for different preform/melt systems.


Material Transaction Solid Fraction Void Fraction Darcy Number Metal Melting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nagata and K. Matsuda: Trans. Jpn. Foundrymen’s Soc., 1982, vol. 2, pp. 616–20.Google Scholar
  2. 2.
    G.P. Martins, D.L. Olson, and G.R. Edwards: Metall. Trans. B, 1988, vol. 19B, pp. 95–101.Google Scholar
  3. 3.
    F.A. Girot, R. Fedon, J.M. Quenisset, and R. Naslain: J. Reinforced Plastics Composites, 1990, vol. 9, pp. 456–69.CrossRefGoogle Scholar
  4. 4.
    A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings: Metall. Trans. A, 1989, vol. 20A, pp. 2535–47.Google Scholar
  5. 5.
    L.J. Masur, A. Mortensen, J.A. Cornie, and M.C. Flemings: Metall. Trans. A, 1989, vol. 20A, pp. 2549–57.Google Scholar
  6. 6.
    A. Mortensen and V. Michaud: Metall. Trans. A, 1990, vol. 21A, pp. 2059–72.Google Scholar
  7. 7.
    R.B. Calhoun and A. Mortensen: Metall. Trans. A, 1992, vol. 23A, pp. 2291–99.Google Scholar
  8. 8.
    E. Lacoste, M. Aboulfatah, M. Danis, and F. Girot: Metall. Trans. A, 1993, vol. 24A, pp. 2667–78.Google Scholar
  9. 9.
    Kwan-Hong Shin: Ph.D. Thesis, The University of Iowa, Iowa City, IA, 1993.Google Scholar
  10. 10.
    S. Long, Z. Zhang, and H.M. Flower: Acta Metall. Mater., 1994, vol. 42 (4), pp. 1389–97.CrossRefGoogle Scholar
  11. 11.
    T. Yamauchi and Y. Nishida: Acta Metall. Mater., 1995, vol. 43 (4), pp. 1313–21.CrossRefGoogle Scholar
  12. 12.
    D.B. Spalding: in Computer Simulation for Fluid, Heat and Mass Transfer in Reciprocation Engines, Hemisphere Publishing Corp., New York, NY, 1989, [pp. 383–455.]Google Scholar
  13. 13.
    D. Vortmeyer, K.J. Dietrich, and K.O. Ring: Adv. Chem. Ser., 1974, vol. 133, pp. 588–99.CrossRefGoogle Scholar
  14. 14.
    J.E. Gatica, H.J. Viljoen, and V. Hlavacek: Chem. Eng. Sci., 1989, vol. 44 (9), pp. 1853–70.CrossRefGoogle Scholar
  15. 15.
    J.M. Straus: J. Fluid Mech., 1974, vol. 64 (1), pp. 51–63.CrossRefGoogle Scholar
  16. 16.
    P.V. Danckwerts: Chem. Eng. Sci., 1953, vol. 2 (1), pp. 1–18.CrossRefGoogle Scholar
  17. 17.
    A.S. Sangani and A. Acrivos: Int. J. Multiphase Flow, 1982, vol. 8, pp. 193–206.CrossRefGoogle Scholar
  18. 18.
    J.E. Drummond and M.I. Tahir: Int. J. Multiphase Flow, 1984, vol. 10, pp. 515–40.CrossRefGoogle Scholar
  19. 19.
    S.K. Datta, N. Simhai, S.N. Tewari, J.E. Gatica, and M. Singh: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3669–74.CrossRefGoogle Scholar
  20. 20.
    A. Mortensen and I. Jin: Int. Mater. Rev., 1992, vol. 37 (3), pp. 101–28.Google Scholar
  21. 21.
    D. Longworth: in Moving Boundary Problems in Heat Flow and Diffusion, J.R. Ockendon and W.R. Hodkin, eds., Clarendon Press, Oxford, United Kingdom, 1975.Google Scholar
  22. 22.
    V.R. Voller and M. Cross: Int. J. Heat Transfer, 1981, vol. 24, pp. 5454–56.Google Scholar
  23. 23.
    V.R. Voller, M. Cross, and N.C. Markatas: Int. J. Num. Methods Eng., 1987, vol. 24, pp. 271–84.CrossRefGoogle Scholar
  24. 24.
    J.E. Gatica, P.A. Dimitriou, J.A. Puszynski, and V. Hlavacek: Int. J. SHS, 1995, vol. 4 (2), pp. 123–36.Google Scholar
  25. 25.
    G.R. Cappleman, J.F. Watts, and T.W. Clyne: J. Mater. Sci., 1985, vol. 20, pp. 2159–68.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • Dhiman K. Biswas
    • 1
  • Jorge E. Gatica
    • 2
  • Surendra N. Tewari
    • 2
  1. 1.Comsys, Information Technology ServicesRaleigh
  2. 2.the Department of Chemical EngineeringCleveland State UniversityCleveland

Personalised recommendations