Metallurgical and Materials Transactions A

, Volume 29, Issue 1, pp 217–226 | Cite as

Quantitative analysis on boundary sliding and its accommodation mode during superplastic deformation of two-phase Ti-6Al-4V alloy

  • Ji Sik Kim
  • Young Won Chang
  • Chong Soo Lee


A study has been made to investigate boundary sliding and its accommodation mode with respect to the variation of grain size and α/β volume fraction during superplastic deformation of a two-phase Ti-6Al-4V alloy. A load relaxation test has been performed at 600 °C and 800 °C to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that grain matrix deformation (GMD) is found to be dominant at 600 °C and is well described by the plastic state equation. Whereas, at 800 °C, phase/grain boundary sliding (P/GBS) becomes dominant and is fitted well with the viscous flow equation. The accommodation mode for fine-grained microstructures (3 µm) well agrees with the isostress model, while that for large-grained structures (11 µm) is a mixed mode of the isostress and isostrain-rate models. The sliding resistance analyzed for the different boundaries is lowest in the α/β boundary, and increases on the order of α/βα/αβ/β, which plays an important role in controlling the superplasticity of the alloys with various α/β phase ratios.


Material Transaction Phase Ratio Grain Boundary Slide Superplastic Deformation Matrix Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.D. Weisert and G.W. Stacher: in Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-AIME, Warrendale, PA, 1982.Google Scholar
  2. 2.
    S.B. Lee, JS Kim, W.Y. Chang, and C.S. Lee: Proc. 3rd Japan Int. SAMPE Symp., TMS, Warrendale, PA, 1993, pp. 1946–53.Google Scholar
  3. 3.
    A.K. Ghosh and R. Raj: Acta Metall., 1981, vol. 29, pp. 607–16.CrossRefGoogle Scholar
  4. 4.
    A.K. Ghosh and C.H. Hamilton: Metall. Trans. A, 1979, vol. 10, pp. 699–706.Google Scholar
  5. 5.
    P.G. Partridge, D.S. Mcdarmaid, and A.W. Bowen: Acta Metall., 1985, vol. 33, pp. 571–77.CrossRefGoogle Scholar
  6. 6.
    J.A. Wert and N.E. Paton: Metall. Trans. A, 1983, vol. 14A, pp. 2535–44.Google Scholar
  7. 7.
    C.H. Hamilton, A.K. Ghosh, and M.M. Mahoney: in Advanced Processing Methods for Titanium, C.H. Hamilton and D.F. Hasson, eds., TMS-AIME, Warrendale, PA, 1982, pp. 129–44.Google Scholar
  8. 8.
    J.R. Leader, D.F. Neal, and C. Hammond: Metall. Trans. A, 1986, vol. 17A, pp. 93–106.Google Scholar
  9. 9.
    M.L. Meier, D.R. Lesuer, and A.K. Mukherjee: Mater. Sci. Eng., 1991, vol. A136, pp. 71–78.Google Scholar
  10. 10.
    B. Baudelet: Mater. Sci. Eng., 1991, vol. A137, pp. 41–55.Google Scholar
  11. 11.
    J.W. Edington, K.N. Melton, and C.P. Cutler: Prog. Mater. Sci., 1976, vol. 21, pp. 61–158.CrossRefGoogle Scholar
  12. 12.
    M.L. Meier, D.R. Lesuer, and A.K. Mukherjee: Mater. Sci. Eng., 1992, vol. A154, pp. 165–73.Google Scholar
  13. 13.
    A. Dutta and D.S. Kumar: Mater. Sci. Eng., 1995, vol. A194, pp. L1-L4.Google Scholar
  14. 14.
    T.G. Langdon: Mater. Sci. Eng., 1994, vol. A174, pp. 225–30.Google Scholar
  15. 15.
    Z.R. Lin, A.H. Chokshi, and T.G. Langdon: J. Mater. Sci., 1988, vol. 23, pp. 2712–22.CrossRefGoogle Scholar
  16. 16.
    S. Hashimoto, F. Moriwaki, T. Mimaki, and S. Miura: in Superplasticity in Advanced Materials, S. Hori, ed., ICSAM, Osaka, Japan, 1991, pp. 23–32.Google Scholar
  17. 17.
    A. Eberhardt and B. Baudelet: Phil. Mag., 1980, vol. A41, pp. 843–69.Google Scholar
  18. 18.
    Y.W. Chang and E.C. Aifantis: in Constitutive Laws for Engineering Materials: Theory and Application, C.S. Desai, ed., Elsevier, Tucson, AZ, 1987, pp. 293–300.Google Scholar
  19. 19.
    L.E. Malvern: Introduction Mechanics of a Continuous Media, Prentice-Hall, Englewood Cliffs, NJ, 1969, pp. 401–02.Google Scholar
  20. 20.
    E.W. Hart: Trans. ASME, 1984, vol. 106, pp. 322–25.CrossRefGoogle Scholar
  21. 21.
    M. Peters: Z. Metallk., 1983, vol. 74, pp. 274–82.Google Scholar
  22. 22.
    E.W. Hart: J. Eng. Mater Technol., 1976, pp. 193–202.Google Scholar
  23. 23.
    T.K. Ha, C.S. Lee, and Y.W. Chang: Scripta Mater., 1996, vol. 35, pp. 635–40.CrossRefGoogle Scholar
  24. 24.
    T.K. Ha and Y.W. Chang: Scripta Mater., 1995, vol. 32, pp. 809–14.CrossRefGoogle Scholar
  25. 25.
    T.K. Ha and Y.W. Chang: Scripta Mater., 1996, vol. 35, pp. 1317–23.CrossRefGoogle Scholar
  26. 26.
    J.S. Kim and C.S. Lee: in Titanium 95, P.A. Blenkinsop, ed., The Institute of Materials, Birmingham, U.K., 1995, vol. 1, pp. 356–63.Google Scholar
  27. 27.
    S.M.L. Sastry, P.S. Pao, and K.K. Sankaran: Titanium 80, Science and Technology, H. Kimura and O. Izumi, eds., AIME, New York, NY, 1980, vol. 2, pp. 873–86.Google Scholar
  28. 28.
    M.T. Cope, D.R. Evetts, and N. Ridley: J. Mater. Sci., 1986, vol. 21, pp. 4003–08.CrossRefGoogle Scholar
  29. 29.
    Pan Ya Qin, Liu Weimin, and Song Zuozhou: in Superplasticity and Superplastic Forming, C.H. Hamilton and N.E. Paton, eds., TMS, Warrendale, PA, 1988, pp. 263–67.Google Scholar
  30. 30.
    E. Girault, J.J. Blandin, A. Varloteaux, M. Suery, and Y. Combres: Scripta Mater., 1993, vol. 29, pp. 503–06.CrossRefGoogle Scholar
  31. 31.
    A. Dutta and D. Banerjee: Scripta Mater., 1990, vol. 24, pp. 1319–22.CrossRefGoogle Scholar
  32. 32.
    W.B. Lee, H.S. Yang, Y.W. Kim, and A.K. Mukherjee: Scripta Mater., 1993, vol. 29, pp. 1403–08.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • Ji Sik Kim
    • 1
  • Young Won Chang
    • 1
  • Chong Soo Lee
    • 1
  1. 1.the Center for Advanced Aerospace MaterialsPohang University of Science and TechnologyPohangKorea

Personalised recommendations