Metallurgical and Materials Transactions A

, Volume 29, Issue 2, pp 513–518

Cyclic deformation behavior of high-purity titanium single crystals: Part II. Microstructure and mechanism

  • X. Tan
  • H. Guo
  • H. Gu
  • C. Laird
  • N. D. H. Munroe


Strain-controlled cyclic tests have been conducted on high-purity titanium single crystals with different orientations. The fatigue mechanisms of the titanium crystals were studied by means of a scanning electron microscope (SEM) and a transmission electron microscope (TEM). It was found that single slip lines, wavy slip lines, double slip lines, twins, and associated slip lines occurred in differently oriented single crystals. A new type of fractographic morphology, parallel traces, was observed. Dislocation patterns and cyclic twins, as well as the mechanical response, were analyzed. The dependence of the deformation mechanisms on the orientations of the single crystals is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Yoo and J.K. Lee: Phil. Mag. A, 1991, vol. 63, p. 987.Google Scholar
  2. 2.
    M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.Google Scholar
  3. 3.
    A. Akhtar and E. Teghtsoonian: Metall. Trans. A, 1975, vol. 6A, pp. 2201–8.Google Scholar
  4. 4.
    A. De Crecy, A. Bourret, S. Naka, and A. Lasalmonie: Phil. Mag. A, 1983, vol. 47, p. 245.Google Scholar
  5. 5.
    J.I. Dickson, J. Ducher, and A. Plumtree: Metall. Trans. A, 1976, vol. 7A, pp. 1559–65.Google Scholar
  6. 6.
    M. Sugano and C.M. Gilmore: Metall. Trans. A, 1980, vol. 11A, pp. 559–63.Google Scholar
  7. 7.
    D.I. Golland and C.J. Beevers: Met. Sci. J., 1971, vol. 5, p. 174.CrossRefGoogle Scholar
  8. 8.
    C.M. Ward-Close and C.J. Beeverse: Metall. Trans. A, 1980, vol. 11A, pp. 1007–17.Google Scholar
  9. 9.
    L. Handfield and J.I. Dickson: in Defects, Fracture and Fatigue, G.C. Sih and J.W. Provan, eds., Martinus Nijhoff Publishers, Hingham, MA, 1983, p. 37.Google Scholar
  10. 10.
    X. Tan, H. Gu, C. Laird, and N.D.H. Munroe: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 507–12.Google Scholar
  11. 11.
    S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Acta Metall. Mater., 1994, vol. 42, p. 3493.CrossRefGoogle Scholar
  12. 12.
    T. Kehagias et al.: Scripta Metall. Mater., 1994, vol. 30, p. 1311.CrossRefGoogle Scholar
  13. 13.
    N.Y. Jin and A.T. Winter: Acta Metall., 1984, vol. 32, p. 989.CrossRefGoogle Scholar
  14. 14.
    H. Numakura, Y. Minonishi, and M. Koiwa: Scripta Metall., 1986, vol. 20, p. 1581.CrossRefGoogle Scholar
  15. 15.
    X. Tan and H. Gu: Scripta Metall. Mater., 1995, vol. 33, p. 1977.CrossRefGoogle Scholar
  16. 16.
    X. Tan and H. Gu: Int. J. Fatigue, 1996, vol. 18, p. 329.CrossRefGoogle Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • X. Tan
    • 1
  • H. Guo
    • 2
  • H. Gu
    • 3
  • C. Laird
    • 4
  • N. D. H. Munroe
    • 5
  1. 1.the Hemispheric Center for Environmental TechnologyFlorida International UniversityMiami
  2. 2.the Department of Metallurgy and Materials EngineeringEcole PolytechniqueMontrealCanada
  3. 3.the Research Institute for Strength of MetalsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  4. 4.the Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphia
  5. 5.the Hemispheric Center for Environmental TechnologyFlorida International UniversityUSA

Personalised recommendations