Metallurgical and Materials Transactions A

, Volume 29, Issue 9, pp 2285–2295 | Cite as

Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition

  • T. R. Malow
  • C. C. Koch


The main goal of this investigation is to determine the influence of grain size on the mechanical properties and, specifically, the intrinsic ductility of nanocrystalline (nc) Fe. Ball-milled nc Fe was consolidated into compacts of near theoretical density by uniaxial warm pressing. Compaction parameters and annealing treatments resulted in a range of grain sizes for subsequent mechanical testing. The miniaturized disk bend test, hardness, and the automated ball indentation (ABI) method were used to test nanocrystal (nc) iron in compression and tension. The deformation and fracture morphologies of the tested samples were characterized by light and scanning electron microscopy. The hardness, as a function of the grain size, was described with a Hall-Petch slope, which was smaller than that in coarse-grained Fe. In tension, the material failed in a macroscopically brittle manner, while local ductility in very concentrated shear bands was observed. The compressive characteristics of the nc Fe were similar to those of a perfectly plastic material. The results are discussed in the context of the mechanical behavior of coarse-grained polycrystalline metals and alloys.


Compaction Material Transaction Shear Band Compaction Pressure Vickers Indentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.S. Darken: Trans. Am. Soc. Met., 1961, vol. 54, p. 600.Google Scholar
  2. 2.
    J.S. Koehler: Phys. Rev. B, 1970, vol. 2, pp. 547–51.CrossRefGoogle Scholar
  3. 3.
    R.W. Armstrong: in Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science Publishers, Essex, England, 1983, pp. 1–31.Google Scholar
  4. 4.
    R.W. Siegel and G.E. Fougere: Nanostruct. Mater., 1995, vol. 6, pp. 205–16.CrossRefGoogle Scholar
  5. 5.
    H. Hahn and K.A. Padmanabhan: Nanostruct. Mater., 1995, vol. 6, pp. 191–200.CrossRefGoogle Scholar
  6. 6.
    M.J. Mayo: in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, M. Nastasi, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993, pp. 361–80.Google Scholar
  7. 7.
    E.O. Hall: Proc. Phys. Soc., 1951, vol. 9, pp. 742–53.Google Scholar
  8. 8.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 173, pp. 25–28.Google Scholar
  9. 9.
    N.J. Petch: Phil. Mag., 1956, vol. 1, pp. 186–90.Google Scholar
  10. 10.
    R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Phil. Mag., 1962, vol. 7, pp. 45–58.Google Scholar
  11. 11.
    G.E. Fougere, J.R. Weertman, and R.W. Siegel: Nanostruct. Mater., 1993, vol. 3, pp. 379–84.CrossRefGoogle Scholar
  12. 12.
    U. Erb, G. Palumbo, R. Zugic, and K.T. Aust: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 93–110.Google Scholar
  13. 13.
    U. Köster, J. Meinhardt, and H. Alves: Mater. Sci. Forum, 1995, vols. 179–181, pp. 533–38.CrossRefGoogle Scholar
  14. 14.
    T.R. Malow, C.C. Koch, P.Q. Miraglia, and K.L. Murty: Mater. Sci. Eng. A, 1998, in press.Google Scholar
  15. 15.
    T.R. Malow and C.C. Koch: North Carolina State University, Raleigh, NC, unpublished research, 1998.Google Scholar
  16. 16.
    T.R. Malow and C.C. Koch: Acta Mater., 1997, vol. 45, pp. 2177–86.CrossRefGoogle Scholar
  17. 17.
    H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974, p. 618.Google Scholar
  18. 18.
    A. Guinier: X-Ray Diffraction, W.H. Freeman and Co., San Francisco, CA, 1963, p. 121.Google Scholar
  19. 19.
    G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.CrossRefGoogle Scholar
  20. 20.
    M.A. Myers and K.K. Chawla: Mechanical Metallurgy, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 52.Google Scholar
  21. 21.
    J.C. Holzer, R. Birringer, J. Eckert, C.E. Krill Ill, and W.L. Johnson: Mater. Res. Soc. Symp. Proc., 1992, vol. 272, pp. 282–88.Google Scholar
  22. 22.
    J. Weissmüller, J. Löffler, and M. Kleber: Nanostruct. Mater., 1995, vol. 6, pp. 105–14.CrossRefGoogle Scholar
  23. 23.
    X.Y. Qin, X.J. Wu, and L.D. Zhang: Nanostruct. Mater., 1995, vol. 5, pp. 101–10.CrossRefGoogle Scholar
  24. 24.
    J.S.C. Jang and C.C. Koch: Scripta Metall. Mater., 1990, vol. 24, p. 1599.CrossRefGoogle Scholar
  25. 25.
    D. Tabor: The Hardness of Metals, Clarendon Press, Oxford, United Kingdom, 1951, p. 95 ff.Google Scholar
  26. 26.
    G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 1976, p. 329 ff.Google Scholar
  27. 27.
    D.K. Shetty, I.G. Wright, N. Mincer, and A.H. Clauer: J. Mater. Sci., 1985, vol. 20, pp. 1873–82.CrossRefGoogle Scholar
  28. 28.
    Metals Handbook, vol. 12, Fractography, 9th ed., ASM, Metals Park, OH, 1987, p. 12 ff.Google Scholar
  29. 29.
    A. Nadai: Theory of Flow and Fracture of Solids, 2nd ed., McGraw-Hill, New York, NY, 1950, p. 527 ff.Google Scholar
  30. 30.
    T. Haubold, R. Bohn, R. Birringer, and H. Gleiter: Mater. Sci. Eng., 1992, vol. A153, pp. 679–83.Google Scholar
  31. 31.
    H. Hahn and H. Gleiter: Scripta Metall., 1979, vol. 13, pp. 3–6.CrossRefGoogle Scholar
  32. 32.
    D.A. Molodov, J. Swiderski, G. Gottstein, W. Lojkowski, and L.S. Shvindlerman: Acta Metall. Mater., 1994, vol. 42, pp. 3397–3407.CrossRefGoogle Scholar
  33. 33.
    P.G. Shewmon: Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, p. 84 ff.Google Scholar
  34. 34.
    A. Cracknell and A.J. Petch: Acta Metall., 1955, vol. 3, pp. 186–89.CrossRefGoogle Scholar
  35. 35.
    H. Conrad and G. Schoek: Acta Metall., 1960, vol. 8, pp. 791–96.CrossRefGoogle Scholar
  36. 36.
    M.M. Hutchinson: Phil. Mag., 1963, vol. 8, pp. 121–27.Google Scholar
  37. 37.
    J.G.Y. Chow, S.B. McRickard, and D.H. Gurinsky: Special Technical Publication No. 341, ASTM, Philadelphia, PA, 1963, pp. 46–66.Google Scholar
  38. 38.
    W. Morrison: Trans. Am. Soc. Met., 1966, vol. 59, pp. 824–46Google Scholar
  39. 39.
    E. Anderson, D.L.W. King, and J. Spreadborough: Trans. AIME, 1968, vol. 242, pp. 115–19.Google Scholar
  40. 40.
    R.A. Jago and N. Hansen: Acta Metall., 1986, vol. 34, pp. 1711–20.CrossRefGoogle Scholar
  41. 41.
    N. Hansen: Acta Metall., 1977, vol. 25, pp. 863–69.CrossRefGoogle Scholar
  42. 42.
    R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev: Mater. Sci. Eng., 1991, vol. A137, p. 35.Google Scholar
  43. 43.
    P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: Mater. Sci. Eng., 1997, vols. A234-A236, pp. 77–82.Google Scholar
  44. 44.
    R.Z. Valiev, F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet: Scripta Metall. Mater., 1992, vol. 27, pp. 855–60.CrossRefGoogle Scholar
  45. 45.
    A.W. Thompson: in Work Hardening in Tension and Fatigue, A.W. Thompson, ed., American Institute of Mining, Metallurgical and Petroleum Engineers, New York, NY, 1977, pp. 89–126.Google Scholar
  46. 46.
    R.W. Armstrong: in Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Elmstord, NY, 1979, pp. 795–800.Google Scholar
  47. 47.
    C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.CrossRefGoogle Scholar
  48. 48.
    B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1993, p. 249 ff.Google Scholar
  49. 49.
    B. Günther, A. Baalmann, and H. Weiss: Mater. Res. Soc. Symp. Proc., 1990, vol. 195, pp. 611–15.Google Scholar
  50. 50.
    R. Suryanarayanan, C.A. Frey, S.M.L. Sastry, B.E. Waller, and W.E. Buhro: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 407–13.Google Scholar
  51. 51.
    J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Aifantis: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2479–81.Google Scholar
  52. 52.
    J.E. Carsley, W.W. Milligan, S.A. Hackney, and E.C. Hackney: in Processing and Properties of Nanocrystalline Materials, C. Suryanarayana, J. Singh, and F.H. Froes, eds., TMS, Warrendale, PA, 1996, pp. 415–20.Google Scholar
  53. 53.
    J.E. Carsley, G.R. Shaik, W.W. Milligan, and E.C. Aifantis: in Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, E. Ma, B. Fultz, J. Morral, and P. Nash, eds., TMS, Warrendale, PA, 1997, pp. 183–92.Google Scholar
  54. 54.
    G.R. Shaik and W.W. Milligan: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 895–904.Google Scholar
  55. 55.
    X.H. Zhu, J.E. Carsley, W.W. Milligan, and E.C. Aifantis: Scripta Mater., 1997, vol. 36, pp. 721–26.CrossRefGoogle Scholar
  56. 56.
    J.P. Hirth: “Viewpoint Set on Shear Bands” in Scripta Met., J.P. Hirth, ed., 1984, vol. 18, pp. 421–58.Google Scholar
  57. 57.
    H. Dève, S. Harren, C. McCullough, and R.J. Asaro: Acta Metall., 1988, vol. 36, pp. 341–65.CrossRefGoogle Scholar
  58. 58.
    H.E. Dève and R.J. Asaro: Metall. Trans. A, 1989, vol. 20A, pp. 579–93.Google Scholar

Copyright information

© ASM International & TMS-The Minerals, Metals and Materials Society 1998

Authors and Affiliations

  • T. R. Malow
    • 1
  • C. C. Koch
    • 1
  1. 1.the Department of Materials Science and EngineeringNorth Carolina State UniversityRaleigh

Personalised recommendations